Алгоритм Удаления Красного Черного Дерева Сверху Вниз

я реализую красное черное дерево с функциями вставки, поиска и удаления в O (log n) времени. Вставка и поиск работают нормально. Однако я застрял на delete. Я нашел этот слайд ppt в интернете, который показывает алгоритм удаления RBT:http://www.slideshare.net/piotrszymanski/red-black-trees#btnNext на стр. 56 и далее. Я знаю, что прошу слишком много, но я застрял на этом более 2 недель, и я не могу найти проблему. Как я понимаю Удаление сверху вниз, которое необходимо повернуть и перекрасить узлы соответственно, пока не будет найден предшественник удаляемого узла. Когда вы найдете этот узел - который будет либо листом, либо узлом с одним правым дочерним узлом, замените удаляемые данные на данные этого узла и удалите этот узел, как обычное удаление BST, верно?

Это код, который я сделал, основываясь на том, что я узнал из этого слайда. Если бы кто-нибудь был так добр, я был бы более чем благодарен! Или, по крайней мере если вы думаете, что есть лучший алгоритм, чем то, что я использую, пожалуйста, скажите мне!

 public void delete(int element){

    if (root == null){ 
        System.out.println("Red Black Tree is Empty!");

    } else {

      Node X = root; 
      parent = null; 
      grandParent = null; 
      sibling = null; 

      if (isLeaf(X)){

          if (X.getElement() == element){
              emptyRBT();
          } 

      } else {

      if (checkIfBlack(root.getLeftChild()) && checkIfBlack(root.getRightChild())){
          root.setIsBlack(false);

          if (X.getElement() > element && X.getLeftChild() != null){ 
              X = moveLeft(X);

          } else if (X.getElement() < element && X.getRightChild() != null){
              X = moveRight(X);
          } 

          Step2(X, element);

      } else { 

          Step2B(X, element);

       } 
     }
   } 
   root.setIsBlack(true);
}

public void Step2(Node X, int element)
{
    int dir = -1;

    while (!isLeaf(X)){

      if (predecessor == null){  // still didn't find Node to delete

        if (X.getElement() > element && X.getLeftChild() != null){
            X = moveLeft(X);
            dir = 0;
        } else if (X.getElement() < element && X.getRightChild() != null){
            X = moveRight(X);
            dir = 1;
        } else if (X.getElement() == element){
            toDelete = X;
            predecessor = inorderPredecessor(X.getRightChild());
            X = moveRight(X);
        }

      } else { // if node to delete is already found and X is equal to right node of to delete
               // move always to the left until you find predecessor

          if (X != predecessor){
              X = moveLeft(X);
              dir = 0;
          } 
      }

      if (!isLeaf(X)){
        if (!hasOneNullNode(X)){

         if (checkIfBlack(X.getLeftChild()) && checkIfBlack(X.getRightChild())){
             Step2A(X, element, dir);
         } else {
             Step2B(X, element);
         }
       }
     }
   }

   removeNode(X);

   if (predecessor != null){
       toDelete.setElement(X.getElement());
   }
}

public Node Step2A(Node X, int element, int dir) {

    if (checkIfBlack(sibling.getLeftChild()) && checkIfBlack(sibling.getRightChild())) {
        X = Step2A1(X);

    } else if ((checkIfBlack(sibling.getLeftChild()) == false) && checkIfBlack(sibling.getRightChild())) {
        X = Step2A2(X);

    } else if ((checkIfBlack(sibling.getLeftChild()) && (checkIfBlack(sibling.getRightChild()) == false))) {
        X = Step2A3(X);

    } else if ((checkIfBlack(sibling.getLeftChild()) == false) && (checkIfBlack(sibling.getRightChild()) == false)) {
        X = Step2A3(X);
    }

    return X;
}

public Node Step2A1(Node X) {

    X.setIsBlack(!X.IsBlack());
    parent.setIsBlack(!parent.IsBlack());
    sibling.setIsBlack(!sibling.IsBlack());

    return X;
}

public Node Step2A2(Node X) {

    if (parent.getLeftChild() == sibling){
        LeftRightRotation(sibling.getLeftChild(), sibling, parent);

    } else RightLeftRotation(sibling.getRightChild(), sibling, parent);

    X.setIsBlack(!X.IsBlack());
    parent.setIsBlack(!parent.IsBlack());

    return X;
}

public Node Step2A3(Node X) {

    if (parent.getLeftChild() == sibling){
        leftRotate(sibling);
    } else if (parent.getRightChild() == sibling){
        rightRotate(sibling);  
    }

    X.setIsBlack(!X.IsBlack());
    parent.setIsBlack(!parent.IsBlack());
    sibling.setIsBlack(!sibling.IsBlack());
    sibling.getRightChild().setIsBlack(!sibling.getRightChild().IsBlack());

    return X;
}

public void Step2B(Node X, int element){

    if (predecessor == null){
        if (X.getElement() > element && X.getLeftChild() != null){
            X = moveLeft(X);
        } else if (X.getElement() < element && X.getRightChild() != null){
            X = moveRight(X);
        } else if (X.getElement() == element){
            Step2(X, element);
        }

    } else {

        if (X != predecessor)
            X = moveLeft(X);
        else Step2(X, element);
    }

    if (X.IsBlack()){

       if (parent.getLeftChild() == sibling){
           leftRotate(sibling);
       } else if (parent.getRightChild() == sibling){
           rightRotate(sibling);
       }

       parent.setIsBlack(!parent.IsBlack());
       sibling.setIsBlack(!sibling.IsBlack()); 

       Step2(X, element);

    } else {
        Step2B(X, element);
    }
}

public void removeNode(Node X) {

    if (isLeaf(X)) {
        adjustParentPointer(null, X);
        count--;

    } else if (X.getLeftChild() != null && X.getRightChild() == null) {
        adjustParentPointer(X.getLeftChild(), X);
        count--;

    } else if (X.getRightChild() != null && X.getLeftChild() == null) {
        adjustParentPointer(X.getRightChild(), X);
        count--;
    } 
}

public Node inorderPredecessor(Node node){

   while (node.getLeftChild() != null){
       node = node.getLeftChild();
   }

   return node;
}

public void adjustParentPointer(Node node, Node current) {

    if (parent != null) {

        if (parent.getElement() < current.getElement()) {
            parent.setRightChild(node);
        } else if (parent.getElement() > current.getElement()) {
            parent.setLeftChild(node);
        }
    } else {
        root = node;
    }
}

public boolean checkIfBlack(Node n){
    if (n == null || n.IsBlack() == true){
        return true;
    } else return false;
}

public Node leftRotate(Node n)
{  
    parent.setLeftChild(n.getRightChild());
    n.setRightChild(parent);

    Node gp = grandParent;

    if (gp != null){

        if (gp.getElement() > n.getElement()){
            gp.setLeftChild(n);
        } else if (gp.getElement() < n.getElement()){
            gp.setRightChild(n);
        }

    } else root = n;

    return n;
}

public Node rightRotate(Node n)
{  
    parent.setRightChild(n.getLeftChild());
    n.setLeftChild(parent);

    Node gp = grandParent;

    if (gp != null){

        if (gp.getElement() > n.getElement()){
            gp.setLeftChild(n);
        } else if (gp.getElement() < n.getElement()){
            gp.setRightChild(n);
        }

    } else root = n;

    return n;
}

узел удаляется, но дерево после удаления будет нарушено черным, что очень неправильно.

2 ответов


на вечно confuzzled блог имеет нисходящие реализации insert и delete для красно-черных деревьев. Он также проходит через случай за случаем, почему он работает. Я не буду копировать его здесь (это довольно долго).

я использовал этот блог в качестве ссылки для реализации красно-черных деревьев как на c++, так и на java. Как я уже говорил в an ранее ответа, я обнаружил, что реализация будет быстрее, чем реализация std::map снизу вверх красно-черных деревьев (независимо STL пришел с gcc в то время).

вот непроверенный, прямой перевод кода на Java. Я настоятельно рекомендую вам протестировать его и трансформировать в соответствии с вашим стилем.

private final static int LEFT = 0;
private final static int RIGHT = 1;

private static class Node {
    private Node left,right;
    private boolean red;
    ...

    // any non-zero argument returns right
    Node link(int direction) {
        return (direction == LEFT) ? this.left : this.right;
    }
    // any non-zero argument sets right
    Node setLink(int direction, Node n) {
        if (direction == LEFT) this.left = n;
        else this.right = n;
        return n;
    }
}

boolean remove(int data) {
  if ( this.root != null ) {
    final Node head = new Node(-1, null, null); /* False tree root */
    Node cur, parent, grandpa; /* Helpers */
    Node found = null;  /* Found item */
    int dir = RIGHT;

    /* Set up helpers */
    cur = head;
    grandpa = parent = null;
    cur.setLink(RIGHT, this.root);

    /* Search and push a red down */
    while ( cur.link(dir) != null ) {
      int last = dir;

      /* Update helpers */
      grandpa = parent, parent = cur;
      cur = cur.link(dir);
      dir = cur.data < data ? RIGHT : LEFT;

      /* Save found node */
      if ( cur.data == data )
        found = cur;

      /* Push the red node down */
      if ( !is_red(cur) && !is_red(cur.link(dir)) ) {
        if ( is_red(cur.link(~dir)) )
          parent = parent.setLink(last, singleRotate(cur, dir));
        else if ( !is_red(cur.link(~dir)) ) {
          Node s = parent.link(~last);

          if ( s != null ) {
            if (!is_red(s.link(~last)) && !is_red(s.link(last))) {
              /* Color flip */
              parent.red = false;
              s.red = true;
              cur.red = true;
            }
            else {
              int dir2 = grandpa.link(RIGHT) == parent ? RIGHT : LEFT;

              if ( is_red(s.link(last)) )
                grandpa.setLink(dir2, doubleRotate(parent, last));
              else if ( is_red(s.link(~last)) )
                grandpa.setLink(dir2, singleRotate(parent, last));

              /* Ensure correct coloring */
              cur.red = grandpa.link(dir2).red = true;
              grandpa.link(dir2).link(LEFT).red = false;
              grandpa.link(dir2).link(RIGHT).red = false;
            }
          }
        }
      }
    }

    /* Replace and remove if found */
    if ( found != null ) {
      found.data = cur.data;
      parent.setLink(
        parent.link(RIGHT) == cur ? RIGHT : LEFT,
        cur.link(cur.link(LEFT) == null ? RIGHT : LEFT));
    }

    /* Update root and make it black */
    this.root = head.link(RIGHT);
    if ( this.root != null )
      this.root.red = false;
  }

  return true;
}

быстрая ссылка : http://algs4.cs.princeton.edu/33balanced/RedBlackBST.java.html

--> внимание: код на сайте полагается на две банки. Однако в datastructures зависимость может быть минимальной. Иногда достаточно прокомментировать основной метод (который служит только в качестве тестового клиента) Если нет : банки загружаются на том же сайте.

Если вы ищете две недели и изучает алгоритмы, скорее всего, вы знаете о

http://algs4.cs.princeton.edu/

веб-сайт, который сопровождает знаменитую

алгоритмы, Роберт Седжвик, Кевин Уэйн

книги.

на этом веб-сайте есть эта реализация красного черного дерева (балансов):

http://algs4.cs.princeton.edu/33balanced/RedBlackBST.java.html

Я еще не смотрел в него (я буду позже год), но я полностью верю, что это будет рабочая реализация RBTree.

некоторые sidenote, которые могут быть интересны для посетителей этой темы: MIT разместил отличные курсы по алгоритмам онлайн. О rbtrees это http://www.youtube.com/watch?v=iumaOUqoSCk