Более быстрое декартовое преобразование numpy в сферическую координату?
У меня есть массив из 3 миллионов точек данных из 3-axiz accellerometer (XYZ), и я хочу добавить 3 столбца в массив, содержащий эквивалентные сферические координаты (r, theta, phi). Следующий код работает, но слишком медленно. Как я могу сделать лучше?
import numpy as np
import math as m
def cart2sph(x,y,z):
XsqPlusYsq = x**2 + y**2
r = m.sqrt(XsqPlusYsq + z**2) # r
elev = m.atan2(z,m.sqrt(XsqPlusYsq)) # theta
az = m.atan2(y,x) # phi
return r, elev, az
def cart2sphA(pts):
return np.array([cart2sph(x,y,z) for x,y,z in pts])
def appendSpherical(xyz):
np.hstack((xyz, cart2sphA(xyz)))
4 ответов
Это похоже на Джастин Цедрыответ, но используя только numpy
и, используя его встроенную векторизацию:
import numpy as np
def appendSpherical_np(xyz):
ptsnew = np.hstack((xyz, np.zeros(xyz.shape)))
xy = xyz[:,0]**2 + xyz[:,1]**2
ptsnew[:,3] = np.sqrt(xy + xyz[:,2]**2)
ptsnew[:,4] = np.arctan2(np.sqrt(xy), xyz[:,2]) # for elevation angle defined from Z-axis down
#ptsnew[:,4] = np.arctan2(xyz[:,2], np.sqrt(xy)) # for elevation angle defined from XY-plane up
ptsnew[:,5] = np.arctan2(xyz[:,1], xyz[:,0])
return ptsnew
обратите внимание, что, как предлагается в комментариях, у меня изменено определение угла места из исходной функции. На моей машине, тестирование с pts = np.random.rand(3000000, 3)
время пошло от 76 секунд до 3,3 секунд. У меня нет Цитона, поэтому я не смог сравнить время с этим решением.
вот быстрый код Cython, который я написал для этого:
cdef extern from "math.h":
long double sqrt(long double xx)
long double atan2(long double a, double b)
import numpy as np
cimport numpy as np
cimport cython
ctypedef np.float64_t DTYPE_t
@cython.boundscheck(False)
@cython.wraparound(False)
def appendSpherical(np.ndarray[DTYPE_t,ndim=2] xyz):
cdef np.ndarray[DTYPE_t,ndim=2] pts = np.empty((xyz.shape[0],6))
cdef long double XsqPlusYsq
for i in xrange(xyz.shape[0]):
pts[i,0] = xyz[i,0]
pts[i,1] = xyz[i,1]
pts[i,2] = xyz[i,2]
XsqPlusYsq = xyz[i,0]**2 + xyz[i,1]**2
pts[i,3] = sqrt(XsqPlusYsq + xyz[i,2]**2)
pts[i,4] = atan2(xyz[i,2],sqrt(XsqPlusYsq))
pts[i,5] = atan2(xyz[i,1],xyz[i,0])
return pts
это заняло время от 62.4 секунд до 1.22 секунд, используя 3,000,000 очков для меня. Это не так уж плохо. Я уверен, что есть и другие улучшения, которые можно сделать.
завершить предыдущие ответы, вот это Numexpr реализация (с возможным возвратом к Numpy),
import numpy as np
from numpy import arctan2, sqrt
import numexpr as ne
def cart2sph(x,y,z, ceval=ne.evaluate):
""" x, y, z : ndarray coordinates
ceval: backend to use:
- eval : pure Numpy
- numexpr.evaluate: Numexpr """
azimuth = ceval('arctan2(y,x)')
xy2 = ceval('x**2 + y**2')
elevation = ceval('arctan2(z, sqrt(xy2))')
r = eval('sqrt(xy2 + z**2)')
return azimuth, elevation, r
для больших размеров массива это позволяет увеличить скорость в 2 раза по сравнению с чистой реализацией Numpy и будет сопоставимо со скоростями C или Cython. Настоящее решение numpy (при использовании с ceval=eval
аргумент) также на 25% быстрее, чем
! Во всем приведенном выше коде есть ошибка.. и это лучший результат Google.. TLDR: Я тестировал это с VPython, используя atan2 для theta (elev) неправильно, используйте яковс! Это правильно для phi (azim). Я рекомендую sympy1.Функция 0 acos (она даже не жалуется на acos (z/r) с r = 0 ) .
http://mathworld.wolfram.com/SphericalCoordinates.html
если мы преобразуем это в физическую систему (r, theta, phi) = (r, elev, azimuth), мы есть:
r = sqrt(x*x + y*y + z*z)
phi = atan2(y,x)
theta = acos(z,r)
не оптимизирован, но правильно код для системы физики правой руки:
from sympy import *
def asCartesian(rthetaphi):
#takes list rthetaphi (single coord)
r = rthetaphi[0]
theta = rthetaphi[1]* pi/180 # to radian
phi = rthetaphi[2]* pi/180
x = r * sin( theta ) * cos( phi )
y = r * sin( theta ) * sin( phi )
z = r * cos( theta )
return [x,y,z]
def asSpherical(xyz):
#takes list xyz (single coord)
x = xyz[0]
y = xyz[1]
z = xyz[2]
r = sqrt(x*x + y*y + z*z)
theta = acos(z/r)*180/ pi #to degrees
phi = atan2(y,x)*180/ pi
return [r,theta,phi]
вы можете проверить его самостоятельно с помощью такой функции, как:
test = asCartesian(asSpherical([-2.13091326,-0.0058279,0.83697319]))
некоторые другие тестовые данные для некоторых квадрантах:
[[ 0. 0. 0. ]
[-2.13091326 -0.0058279 0.83697319]
[ 1.82172775 1.15959835 1.09232283]
[ 1.47554111 -0.14483833 -1.80804324]
[-1.13940573 -1.45129967 -1.30132008]
[ 0.33530045 -1.47780466 1.6384716 ]
[-0.51094007 1.80408573 -2.12652707]]
я использовал VPython дополнительно, чтобы легко визуализировать векторы:
test = v.arrow(pos = (0,0,0), axis = vis_ori_ALA , shaftwidth=0.05, color=v.color.red)