Генератор случайных чисел c распределенной вероятностью

Я хочу создать число, основанное на распределенной вероятности. Например, просто скажите, что есть следующие случаи каждого числа:

Number| Count           
1    |  150                
2    |  40          
3    |  15          
4    |  3  

with a total of (150+40+15+3) = 208     
then the probability of a 1 is 150/208= 0.72    
and the probability of a 2 is 40/208 = 0.192    

Как сделать генератор случайных чисел, который возвращает числа, основанные на этом распределении вероятности?

Я рад, что это основано на статическом, жестко закодированном наборе, но я в конечном итоге хочу, чтобы он получил распределение вероятности из запроса базы данных.

Я видел похожие примеры как этот но они не очень универсальные. Есть предложения?

7 ответов


общий подход заключается в подаче равномерно распределенных случайных чисел из 0..1 интервал в обратная функция кумулятивного распределения нужного распределения.

таким образом, в вашем случае просто нарисуйте случайное число x из 0..1 (например,Random.NextDouble()) и на основе его значения return

  • 1 Если 0
  • 2 Если 150/208
  • 3 Если 190/208
  • 4 в противном случае.

этот вопрос объясняет различные подходы к генерации случайных чисел с различной вероятностью. Согласно в этой статье, показанный на этом вопросе, лучшим таким подходом (с точки зрения сложности времени) является так называемый "метод псевдонимов" Майкла воза.

для вашего удобства, я написал и здесь C# - реализация генератора случайных чисел реализации псевдоним метод:

public class LoadedDie {
    // Initializes a new loaded die.  Probs
    // is an array of numbers indicating the relative
    // probability of each choice relative to all the
    // others.  For example, if probs is [3,4,2], then
    // the chances are 3/9, 4/9, and 2/9, since the probabilities
    // add up to 9.
    public LoadedDie(int probs){
        this.prob=new List<long>();
        this.alias=new List<int>();
        this.total=0;
        this.n=probs;
        this.even=true;
    }

    Random random=new Random();

    List<long> prob;
    List<int> alias;
    long total;
    int n;
    bool even;

    public LoadedDie(IEnumerable<int> probs){
        // Raise an error if nil
        if(probs==null)throw new ArgumentNullException("probs");
        this.prob=new List<long>();
        this.alias=new List<int>();
        this.total=0;
        this.even=false;
        var small=new List<int>();
        var large=new List<int>();
        var tmpprobs=new List<long>();
        foreach(var p in probs){
            tmpprobs.Add(p);
        }
        this.n=tmpprobs.Count;
        // Get the max and min choice and calculate total
        long mx=-1, mn=-1;
        foreach(var p in tmpprobs){
            if(p<0)throw new ArgumentException("probs contains a negative probability.");
            mx=(mx<0 || p>mx) ? p : mx;
            mn=(mn<0 || p<mn) ? p : mn;
            this.total+=p;
        }
        // We use a shortcut if all probabilities are equal
        if(mx==mn){
            this.even=true;
            return;
        }
        // Clone the probabilities and scale them by
        // the number of probabilities
        for(var i=0;i<tmpprobs.Count;i++){
            tmpprobs[i]*=this.n;
            this.alias.Add(0);
            this.prob.Add(0);
        }
        // Use Michael Vose's alias method
        for(var i=0;i<tmpprobs.Count;i++){
            if(tmpprobs[i]<this.total)
                small.Add(i); // Smaller than probability sum
            else
                large.Add(i); // Probability sum or greater
        }
        // Calculate probabilities and aliases
        while(small.Count>0 && large.Count>0){
            var l=small[small.Count-1];small.RemoveAt(small.Count-1);
            var g=large[large.Count-1];large.RemoveAt(large.Count-1);
            this.prob[l]=tmpprobs[l];
            this.alias[l]=g;
            var newprob=(tmpprobs[g]+tmpprobs[l])-this.total;
            tmpprobs[g]=newprob;
            if(newprob<this.total)
                small.Add(g);
            else
                large.Add(g);
        }
        foreach(var g in large)
            this.prob[g]=this.total;
        foreach(var l in small)
            this.prob[l]=this.total;
    }

    // Returns the number of choices.
    public int Count {
        get {
            return this.n;
        }
    }
    // Chooses a choice at random, ranging from 0 to the number of choices
    // minus 1.
    public int NextValue(){
        var i=random.Next(this.n);
        return (this.even || random.Next((int)this.total)<this.prob[i]) ? i : this.alias[i];
    }
}

пример:

 var loadedDie=new LoadedDie(new int[]{150,40,15,3}); // list of probabilities for each number:
                                                      // 0 is 150, 1 is 40, and so on
 int number=loadedDie.nextValue(); // return a number from 0-3 according to given probabilities;
                                   // the number can be an index to another array, if needed

Я поместите этот код в общественное достояние.


сделать это только один раз:

  • напишите функцию, которая вычисляет массив cdf с заданным массивом pdf. В вашем примере массив pdf - [150,40,15,3], массив cdf будет [150,190,205,208].

делайте это каждый раз:

  • получите случайное число в [0,1), умножьте на 208, усеките вверх (или вниз: я оставляю вам думать об угловых случаях), у вас будет целое число в 1..208. Название его Р.
  • выполнить бинарный поиск на массиве cdf для r. Возвращает индекс ячейки, содержащей r.

время работы будет пропорционально журналу размера данного массива pdf. И это хорошо. Однако, если размер массива всегда будет таким маленьким (4 в вашем примере), то выполнение линейный поиск легче, а также будет работать лучше.


Я знаю, что это старый пост, но я также искал такой генератор и не был удовлетворен решениями, которые я нашел. Поэтому я написал свой собственный и хотите поделиться им с миром.

просто вызовите " Add(...) "несколько раз перед вызовом" NextItem(...)"

/// <summary> A class that will return one of the given items with a specified possibility. </summary>
/// <typeparam name="T"> The type to return. </typeparam>
/// <example> If the generator has only one item, it will always return that item. 
/// If there are two items with possibilities of 0.4 and 0.6 (you could also use 4 and 6 or 2 and 3) 
/// it will return the first item 4 times out of ten, the second item 6 times out of ten. </example>
public class RandomNumberGenerator<T>
{
    private List<Tuple<double, T>> _items = new List<Tuple<double, T>>();
    private Random _random = new Random();

    /// <summary>
    /// All items possibilities sum.
    /// </summary>
    private double _totalPossibility = 0;

    /// <summary>
    /// Adds a new item to return.
    /// </summary>
    /// <param name="possibility"> The possibility to return this item. Is relative to the other possibilites passed in. </param>
    /// <param name="item"> The item to return. </param>
    public void Add(double possibility, T item)
    {
        _items.Add(new Tuple<double, T>(possibility, item));
        _totalPossibility += possibility;
    }

    /// <summary>
    /// Returns a random item from the list with the specified relative possibility.
    /// </summary>
    /// <exception cref="InvalidOperationException"> If there are no items to return from. </exception>
    public T NextItem()
    {
        var rand = _random.NextDouble() * _totalPossibility;
        double value = 0;
        foreach (var item in _items)
        {
            value += item.Item1;
            if (rand <= value)
                return item.Item2;
        }
        return _items.Last().Item2; // Should never happen
    }
}

Спасибо за все ваши решения, ребята! Высоко ценится!

@Menjaraz я попытался реализовать ваше решение, поскольку оно выглядит очень удобным для ресурсов, однако возникли некоторые трудности с синтаксисом.

поэтому сейчас я просто преобразовал свое резюме в плоский список значений, используя LINQ SelectMany () и Enumerable.Повторять.)(

public class InventoryItemQuantityRandomGenerator
{
    private readonly Random _random;
    private readonly IQueryable<int> _quantities;

    public InventoryItemQuantityRandomGenerator(IRepository database, int max)
    {
        _quantities = database.AsQueryable<ReceiptItem>()
            .Where(x => x.Quantity <= max)
            .GroupBy(x => x.Quantity)
            .Select(x => new
                             {
                                 Quantity = x.Key,
                                 Count = x.Count()
                             })
            .SelectMany(x => Enumerable.Repeat(x.Quantity, x.Count));

        _random = new Random();
    }

    public int Next()
    {
        return _quantities.ElementAt(_random.Next(0, _quantities.Count() - 1));
    }
}

использовать мой метод. Это просто и легко понять. Я не считаю порцию в диапазоне 0...1, я просто использовать "Probabilityp бассейн" (звучит круто, да?)

на круговой диаграмме вы можете увидеть вес каждого элемента в пуле

здесь вы можете увидеть реализацию накопительной вероятности для рулетки

`

// Some c`lass or struct for represent items you want to roulette
public class Item
{
    public string name; // not only string, any type of data
    public int chance;  // chance of getting this Item
}

public class ProportionalWheelSelection
{
    public static Random rnd = new Random();

    // Static method for using from anywhere. You can make its overload for accepting not only List, but arrays also: 
    // public static Item SelectItem (Item[] items)...
    public static Item SelectItem(List<Item> items)
    {
        // Calculate the summa of all portions.
        int poolSize = 0;
        for (int i = 0; i < items.Count; i++)
        {
            poolSize += items[i].chance;
        }

        // Get a random integer from 0 to PoolSize.
        int randomNumber = rnd.Next(0, poolSize) + 1;

        // Detect the item, which corresponds to current random number.
        int accumulatedProbability = 0;
        for (int i = 0; i < items.Count; i++)
        {
            accumulatedProbability += items[i].chance;
            if (randomNumber <= accumulatedProbability)
                return items[i];
        }
        return null;    // this code will never come while you use this programm right :)
    }
}

// Example of using somewhere in your program:
        static void Main(string[] args)
        {
            List<Item> items = new List<Item>();
            items.Add(new Item() { name = "Anna", chance = 100});
            items.Add(new Item() { name = "Alex", chance = 125});
            items.Add(new Item() { name = "Dog", chance = 50});
            items.Add(new Item() { name = "Cat", chance = 35});

            Item newItem = ProportionalWheelSelection.SelectItem(items);
        }

вот реализация с помощью обратная функция распределения:

using System;
using System.Linq;

    // ...
    private static readonly Random RandomGenerator = new Random();

    private int GetDistributedRandomNumber()
    {
        double totalCount = 208;

        var number1Prob = 150 / totalCount;
        var number2Prob = (150 + 40) / totalCount;
        var number3Prob = (150 + 40 + 15) / totalCount;

        var randomNumber = RandomGenerator.NextDouble();

        int selectedNumber;

        if (randomNumber < number1Prob)
        {
            selectedNumber = 1;
        }
        else if (randomNumber >= number1Prob && randomNumber < number2Prob)
        {
            selectedNumber = 2;
        }
        else if (randomNumber >= number2Prob && randomNumber < number3Prob)
        {
            selectedNumber = 3;
        }
        else
        {
            selectedNumber = 4;
        }

        return selectedNumber;
    }

пример для проверки случайного распределения:

        int totalNumber1Count = 0;
        int totalNumber2Count = 0;
        int totalNumber3Count = 0;
        int totalNumber4Count = 0;

        int testTotalCount = 100;

        foreach (var unused in Enumerable.Range(1, testTotalCount))
        {
            int selectedNumber = GetDistributedRandomNumber();

            Console.WriteLine($"selected number is {selectedNumber}");

            if (selectedNumber == 1)
            {
                totalNumber1Count += 1;
            }

            if (selectedNumber == 2)
            {
                totalNumber2Count += 1;
            }

            if (selectedNumber == 3)
            {
                totalNumber3Count += 1;
            }

            if (selectedNumber == 4)
            {
                totalNumber4Count += 1;
            }
        }

        Console.WriteLine("");
        Console.WriteLine($"number 1 -> total selected count is {totalNumber1Count} ({100 * (totalNumber1Count / (double) testTotalCount):0.0} %) ");
        Console.WriteLine($"number 2 -> total selected count is {totalNumber2Count} ({100 * (totalNumber2Count / (double) testTotalCount):0.0} %) ");
        Console.WriteLine($"number 3 -> total selected count is {totalNumber3Count} ({100 * (totalNumber3Count / (double) testTotalCount):0.0} %) ");
        Console.WriteLine($"number 4 -> total selected count is {totalNumber4Count} ({100 * (totalNumber4Count / (double) testTotalCount):0.0} %) ");

пример:

selected number is 1
selected number is 1
selected number is 1
selected number is 1
selected number is 2
selected number is 1
...
selected number is 2
selected number is 3
selected number is 1
selected number is 1
selected number is 1
selected number is 1
selected number is 1

number 1 -> total selected count is 71 (71.0 %) 
number 2 -> total selected count is 20 (20.0 %) 
number 3 -> total selected count is 8 (8.0 %) 
number 4 -> total selected count is 1 (1.0 %)