Интерполяция с обратным взвешенным расстоянием (IDW) с Python
Вопрос: Каков наилучший способ вычисления интерполяции с обратным взвешенным расстоянием (IDW) в Python для точечных местоположений?
Некоторые Справочная Информация: В настоящее время я использую RPy2 для взаимодействия с R и его модулем gstat. К сожалению, модуль gstat конфликтует с arcgisscripting, который я обошел, запустив анализ на основе RPy2 в отдельном процессе. Даже если эта проблема решена в последних/будущих версиях, и эффективность может быть улучшено, я все равно хотел бы удалить свою зависимость от установки R.
веб-сайт gstat предоставляет автономный исполняемый файл, который легче упаковать с моим скриптом python, но я все еще надеюсь на решение Python, которое не требует нескольких записей на диск и запуска внешних процессов. Число вызовов функции интерполяции, отдельных наборов точек и значений, может приближаться к 20 000 в процессе обработки, которую я выполняю.
мне конкретно нужно интерполируйте точки, поэтому использование функции IDW в ArcGIS для создания растров звучит еще хуже, чем использование R, с точки зрения производительности.....если только нет способа эффективно замаскировать только те моменты, которые мне нужны. Даже с этой модификацией я бы не ожидал, что производительность будет такой большой. Я рассмотрю этот вариант в качестве другой альтернативы. UPDATE: проблема здесь в том, что вы привязаны к размеру ячейки, которую вы используете. Если вы уменьшите размер ячейки, чтобы получить лучшую точность, обработка займет много времени время. Вы также должны следить, извлекая по точкам.....над всем уродливым методом, если вы хотите значения для определенных точек.
Я посмотрел на документация scipy, но не похоже, что есть прямой способ вычисления IDW.
Я думаю о сворачивании моей собственной реализации, возможно, используя некоторые функции scipy, чтобы найти ближайшие точки и рассчитать расстояния.
я упускаю что-то очевидное? Есть там модуль python, который я не видел, делает именно то, что я хочу? Является ли создание моей собственной реализации с помощью scipy мудрым выбором?
2 ответов
изменено 20 окт: этот класс Invdisttree сочетает взвешивание на обратном расстоянии и
scipy.пространственный.KDTree.
Забудьте первоначальный ответ грубой силы;
это имхо метод выбора для интерполяции рассеянных данных.
""" invdisttree.py: inverse-distance-weighted interpolation using KDTree
fast, solid, local
"""
from __future__ import division
import numpy as np
from scipy.spatial import cKDTree as KDTree
# http://docs.scipy.org/doc/scipy/reference/spatial.html
__date__ = "2010-11-09 Nov" # weights, doc
#...............................................................................
class Invdisttree:
""" inverse-distance-weighted interpolation using KDTree:
invdisttree = Invdisttree( X, z ) -- data points, values
interpol = invdisttree( q, nnear=3, eps=0, p=1, weights=None, stat=0 )
interpolates z from the 3 points nearest each query point q;
For example, interpol[ a query point q ]
finds the 3 data points nearest q, at distances d1 d2 d3
and returns the IDW average of the values z1 z2 z3
(z1/d1 + z2/d2 + z3/d3)
/ (1/d1 + 1/d2 + 1/d3)
= .55 z1 + .27 z2 + .18 z3 for distances 1 2 3
q may be one point, or a batch of points.
eps: approximate nearest, dist <= (1 + eps) * true nearest
p: use 1 / distance**p
weights: optional multipliers for 1 / distance**p, of the same shape as q
stat: accumulate wsum, wn for average weights
How many nearest neighbors should one take ?
a) start with 8 11 14 .. 28 in 2d 3d 4d .. 10d; see Wendel's formula
b) make 3 runs with nnear= e.g. 6 8 10, and look at the results --
|interpol 6 - interpol 8| etc., or |f - interpol*| if you have f(q).
I find that runtimes don't increase much at all with nnear -- ymmv.
p=1, p=2 ?
p=2 weights nearer points more, farther points less.
In 2d, the circles around query points have areas ~ distance**2,
so p=2 is inverse-area weighting. For example,
(z1/area1 + z2/area2 + z3/area3)
/ (1/area1 + 1/area2 + 1/area3)
= .74 z1 + .18 z2 + .08 z3 for distances 1 2 3
Similarly, in 3d, p=3 is inverse-volume weighting.
Scaling:
if different X coordinates measure different things, Euclidean distance
can be way off. For example, if X0 is in the range 0 to 1
but X1 0 to 1000, the X1 distances will swamp X0;
rescale the data, i.e. make X0.std() ~= X1.std() .
A nice property of IDW is that it's scale-free around query points:
if I have values z1 z2 z3 from 3 points at distances d1 d2 d3,
the IDW average
(z1/d1 + z2/d2 + z3/d3)
/ (1/d1 + 1/d2 + 1/d3)
is the same for distances 1 2 3, or 10 20 30 -- only the ratios matter.
In contrast, the commonly-used Gaussian kernel exp( - (distance/h)**2 )
is exceedingly sensitive to distance and to h.
"""
# anykernel( dj / av dj ) is also scale-free
# error analysis, |f(x) - idw(x)| ? todo: regular grid, nnear ndim+1, 2*ndim
def __init__( self, X, z, leafsize=10, stat=0 ):
assert len(X) == len(z), "len(X) %d != len(z) %d" % (len(X), len(z))
self.tree = KDTree( X, leafsize=leafsize ) # build the tree
self.z = z
self.stat = stat
self.wn = 0
self.wsum = None;
def __call__( self, q, nnear=6, eps=0, p=1, weights=None ):
# nnear nearest neighbours of each query point --
q = np.asarray(q)
qdim = q.ndim
if qdim == 1:
q = np.array([q])
if self.wsum is None:
self.wsum = np.zeros(nnear)
self.distances, self.ix = self.tree.query( q, k=nnear, eps=eps )
interpol = np.zeros( (len(self.distances),) + np.shape(self.z[0]) )
jinterpol = 0
for dist, ix in zip( self.distances, self.ix ):
if nnear == 1:
wz = self.z[ix]
elif dist[0] < 1e-10:
wz = self.z[ix[0]]
else: # weight z s by 1/dist --
w = 1 / dist**p
if weights is not None:
w *= weights[ix] # >= 0
w /= np.sum(w)
wz = np.dot( w, self.z[ix] )
if self.stat:
self.wn += 1
self.wsum += w
interpol[jinterpol] = wz
jinterpol += 1
return interpol if qdim > 1 else interpol[0]
#...............................................................................
if __name__ == "__main__":
import sys
N = 10000
Ndim = 2
Nask = N # N Nask 1e5: 24 sec 2d, 27 sec 3d on mac g4 ppc
Nnear = 8 # 8 2d, 11 3d => 5 % chance one-sided -- Wendel, mathoverflow.com
leafsize = 10
eps = .1 # approximate nearest, dist <= (1 + eps) * true nearest
p = 1 # weights ~ 1 / distance**p
cycle = .25
seed = 1
exec "\n".join( sys.argv[1:] ) # python this.py N= ...
np.random.seed(seed )
np.set_printoptions( 3, threshold=100, suppress=True ) # .3f
print "\nInvdisttree: N %d Ndim %d Nask %d Nnear %d leafsize %d eps %.2g p %.2g" % (
N, Ndim, Nask, Nnear, leafsize, eps, p)
def terrain(x):
""" ~ rolling hills """
return np.sin( (2*np.pi / cycle) * np.mean( x, axis=-1 ))
known = np.random.uniform( size=(N,Ndim) ) ** .5 # 1/(p+1): density x^p
z = terrain( known )
ask = np.random.uniform( size=(Nask,Ndim) )
#...............................................................................
invdisttree = Invdisttree( known, z, leafsize=leafsize, stat=1 )
interpol = invdisttree( ask, nnear=Nnear, eps=eps, p=p )
print "average distances to nearest points: %s" % \
np.mean( invdisttree.distances, axis=0 )
print "average weights: %s" % (invdisttree.wsum / invdisttree.wn)
# see Wikipedia Zipf's law
err = np.abs( terrain(ask) - interpol )
print "average |terrain() - interpolated|: %.2g" % np.mean(err)
# print "interpolate a single point: %.2g" % \
# invdisttree( known[0], nnear=Nnear, eps=eps )
Edit: @Denis прав, линейный Rbf (например,scipy.интерполировать.Rbf С "function= 'linear'") не совпадает с IDW...
(заметьте, все они будут использовать чрезмерное количество памяти, если вы используете большое количество очков!)
вот простой пример IDW:
def simple_idw(x, y, z, xi, yi):
dist = distance_matrix(x,y, xi,yi)
# In IDW, weights are 1 / distance
weights = 1.0 / dist
# Make weights sum to one
weights /= weights.sum(axis=0)
# Multiply the weights for each interpolated point by all observed Z-values
zi = np.dot(weights.T, z)
return zi
тогда как, вот что такое линейный Rbf:
def linear_rbf(x, y, z, xi, yi):
dist = distance_matrix(x,y, xi,yi)
# Mutual pariwise distances between observations
internal_dist = distance_matrix(x,y, x,y)
# Now solve for the weights such that mistfit at the observations is minimized
weights = np.linalg.solve(internal_dist, z)
# Multiply the weights for each interpolated point by the distances
zi = np.dot(dist.T, weights)
return zi
(используя функцию distance_matrix здесь:)
def distance_matrix(x0, y0, x1, y1):
obs = np.vstack((x0, y0)).T
interp = np.vstack((x1, y1)).T
# Make a distance matrix between pairwise observations
# Note: from <http://stackoverflow.com/questions/1871536>
# (Yay for ufuncs!)
d0 = np.subtract.outer(obs[:,0], interp[:,0])
d1 = np.subtract.outer(obs[:,1], interp[:,1])
return np.hypot(d0, d1)
положить все это вместе в хороший пример copy-paste дает несколько быстрых графиков сравнения: домашние ОВР пример сюжета http://www.geology.wisc.edu/~jkington/homemade_idw.ПНГсамодельный линейный РБФ пример сюжета http://www.geology.wisc.edu/~jkington/homemade_rbf.ПНГсоставляющей линейная РБФ пример сюжета http://www.geology.wisc.edu/~jkington/scipy_rbf.ПНГ
import numpy as np
import matplotlib.pyplot as plt
from scipy.interpolate import Rbf
def main():
# Setup: Generate data...
n = 10
nx, ny = 50, 50
x, y, z = map(np.random.random, [n, n, n])
xi = np.linspace(x.min(), x.max(), nx)
yi = np.linspace(y.min(), y.max(), ny)
xi, yi = np.meshgrid(xi, yi)
xi, yi = xi.flatten(), yi.flatten()
# Calculate IDW
grid1 = simple_idw(x,y,z,xi,yi)
grid1 = grid1.reshape((ny, nx))
# Calculate scipy's RBF
grid2 = scipy_idw(x,y,z,xi,yi)
grid2 = grid2.reshape((ny, nx))
grid3 = linear_rbf(x,y,z,xi,yi)
print grid3.shape
grid3 = grid3.reshape((ny, nx))
# Comparisons...
plot(x,y,z,grid1)
plt.title('Homemade IDW')
plot(x,y,z,grid2)
plt.title("Scipy's Rbf with function=linear")
plot(x,y,z,grid3)
plt.title('Homemade linear Rbf')
plt.show()
def simple_idw(x, y, z, xi, yi):
dist = distance_matrix(x,y, xi,yi)
# In IDW, weights are 1 / distance
weights = 1.0 / dist
# Make weights sum to one
weights /= weights.sum(axis=0)
# Multiply the weights for each interpolated point by all observed Z-values
zi = np.dot(weights.T, z)
return zi
def linear_rbf(x, y, z, xi, yi):
dist = distance_matrix(x,y, xi,yi)
# Mutual pariwise distances between observations
internal_dist = distance_matrix(x,y, x,y)
# Now solve for the weights such that mistfit at the observations is minimized
weights = np.linalg.solve(internal_dist, z)
# Multiply the weights for each interpolated point by the distances
zi = np.dot(dist.T, weights)
return zi
def scipy_idw(x, y, z, xi, yi):
interp = Rbf(x, y, z, function='linear')
return interp(xi, yi)
def distance_matrix(x0, y0, x1, y1):
obs = np.vstack((x0, y0)).T
interp = np.vstack((x1, y1)).T
# Make a distance matrix between pairwise observations
# Note: from <http://stackoverflow.com/questions/1871536>
# (Yay for ufuncs!)
d0 = np.subtract.outer(obs[:,0], interp[:,0])
d1 = np.subtract.outer(obs[:,1], interp[:,1])
return np.hypot(d0, d1)
def plot(x,y,z,grid):
plt.figure()
plt.imshow(grid, extent=(x.min(), x.max(), y.max(), y.min()))
plt.hold(True)
plt.scatter(x,y,c=z)
plt.colorbar()
if __name__ == '__main__':
main()