Как написать простой Java-программы, которая находит наибольший общий делитель двух чисел? [дубликат]

этот вопрос уже есть ответ здесь:

вот вопрос:

"написать метод с именем НОД, которая принимает два целых числа в качестве параметров и возвращает наибольший общий делитель двух чисел. Наибольший общий делитель (GCD) двух числа A и B-это наибольшее целое число, которое является фактором A и B. НОД любого числа и 1-1 и НОД любого числа а 0-это число.

одним из эффективных способов вычисления GCD двух чисел является использование алгоритма Евклида, который гласит следующее:

GCD(A, B) = GCD(B, A % B) 
GCD(A, 0) = Absolute value of A"

Я правда не знаю, как решить эту проблему. Мне просто нужны некоторые подсказки и советы о том, что я сделал неправильно в программе, которую я до сих пор. (Я должен поставить сканер, это мой учитель требование.) Не давайте мне полный код, так как я хочу решить это сам. Может быть, просто дайте мне подсказку о том, как я включаю эту формулу, которую вы видите выше. (И если вам интересно, почему я поставил == 0, это потому, что я думал, что если у вас есть два числа, скажем 0 и 90, их GCD будет 0 правильно??)

кроме того, мой код должен включать циклы while...Я бы предпочел, если бы петли...

спасибо заранее! :)

моя текущая программа:

public static void main(String[] args) {
        Scanner console = new Scanner(System.in);
        int a = console.nextInt();
        int b = console.nextInt();
        gcd (a, b);
    }

    public static void gcd(int a, int b) {
        System.out.print("Type in two numbers and I will print outs its Greatest Common Divisor: ");
        int gcdNum1 = console.nextInt();
        int gcdNum2 = console.nextInt();
        while (gcdNum1 == 0) {
            gcdNum1 = 0;
        }
        while (gcdNum2 > gcdNum1) {
            int gcd = gcdNum1 % gcdNum2;
        }
        System.out.print(gcdNum1 + gcdNum2);
    }
}

8 ответов


рекурсивный метод будет:

static int gcd(int a, int b)
{
  if(a == 0 || b == 0) return a+b; // base case
  return gcd(b,a%b);
}

использование цикла while:

static int gcd(int a, int b)
{
  while(a!=0 && b!=0) // until either one of them is 0
  {
     int c = b;
     b = a%b;
     a = c;
  }
  return a+b; // either one is 0, so return the non-zero value
}

когда я вернусь a+b, Я фактически возвращаю ненулевое число, предполагая, что один из них равен 0.


вы также можете сделать это в три строки:

public static int gcd(int x, int y){
  return (y == 0) ? x : gcd(y, x % y);
}

здесь, если y = 0, х возвращается. В противном случае gcd метод вызывается снова, с различными значениями параметров.


public static int GCD(int x, int y) {   
    int r;
    while (y!=0) {
        r = x%y;
        x = y;
        y = r;
    }
    return x;
}

import java.util.Scanner;


public class Main {




public static void  main(String [] args)
{
    Scanner input = new Scanner(System.in);
    System.out.println("Please enter the first integer:");
    int b = input.nextInt();
    System.out.println("Please enter the second integer:");
    int d = input.nextInt();

    System.out.println("The GCD of " + b + " and " + d + " is " +  getGcd(b,d) + ".");
}


public static int getGcd(int b, int d)
{
    int gcd = 1;

    if(b>d)
    {
        for(int i = d; i >=1; i--)
        {
            if(b%i==0 && d%i ==0)
            {
                return i;
            }
        }
    }
    else
    {
        for(int j = b; j >=1; j--)
        {
            if(b%j==0 && d% j==0)
            {
                return j;
            }
        }
    }   
    return gcd;

}
}

один из способов сделать это код ниже:

        int gcd = 0;
        while (gcdNum2 !=0 && gcdNum1 != 0 ) {
        if(gcdNum1 % gcdNum2 == 0){
            gcd = gcdNum2;
        }
            int aux = gcdNum2; 
            gcdNum2 = gcdNum1 % gcdNum2;
            gcdNum1 = aux;
    }

для этого не требуется рекурсия.

и будьте осторожны, он говорит, что когда число равно нулю, то GCD-это число, которое не равно нулю.

    while (gcdNum1 == 0) {
    gcdNum1 = 0;
}

вы должны изменить это, чтобы выполнить требование.

Я не собираюсь рассказывать вам, как полностью изменить ваш код, только как вычислить gcd.


private static void GCD(int a, int b) {

    int temp;
    // make a greater than b
    if (b > a) {
         temp = a;
         a = b;
         b = temp;
    }

    while (b !=0) {
        // gcd of b and a%b
        temp = a%b;
        // always make a greater than bf
        a =b;
        b =temp;

    }
    System.out.println(a);
}

import java.util.Scanner;

class CalculateGCD 
{   
  public static int calGCD(int a, int b) 
  { 
   int c=0,d=0;  
   if(a>b){c=b;} 
   else{c=a;}  
   for(int i=c; i>0; i--) 
   { 
    if(((a%i)+(b%i))==0) 
    { 
     d=i; 
     break; 
    } 
   } 
   return d;  
  }  

  public static void main(String args[]) 
  { 
   Scanner sc=new Scanner(System.in); 
   System.out.println("Enter the nos whose GCD is to be calculated:"); 
   int a=sc.nextInt(); 
   int b=sc.nextInt(); 
   System.out.println(calGCD(a,b));  
  } 
 } 

теперь, я только начал программировать около недели назад, так что ничего необычного, но у меня была проблема и я придумал это, что может быть проще для людей, которые только начинают программировать, чтобы понять. Он использует метод Евклида, как и в предыдущих примерах.

public class GCD {
  public static void main(String[] args){
    int x = Math.max(Integer.parseInt(args[0]),Integer.parseInt(args[1]));    
    int y = Math.min(Integer.parseInt(args[0]),Integer.parseInt(args[1]));     
    for (int r = x % y; r != 0; r = x % y){
      x = y;
      y = r;
    }
    System.out.println(y);
  }
}