Как вычислить количество вхождений определенного значения в строке в R
у меня довольно сложная проблема, которую я просто не могу решить.
у меня большой набор данных (23277 строк, 151 столбец). Каждый столбец имеет значения от 0: 100 (включительно), представляющие вероятности, присвоенные событиям в мире.
в рамках вычисления оценки для каждого человека мне нужно подсчитать вхождения каждого из значений в наборе данных.
Я сначала попытался применить, но мне нужно игнорировать NA и подмножество, поэтому, когда я попробовал следующий:
apply(ans.samp, 1, sum(ans.samp[ans==0]), na.rm=TRUE)
я получил сообщение об ошибке: sum(ans.samp[ans == 0]) ' не является функцией, символом или символом
я повторил этот процесс с sapply, vapply, tapply и do.звонить без толку.
отказавшись от векторизованного решения, я написал следующее для цикла.
RespCount <- function (x) { for (i in (1:nrow(x)))
{ res <- vector(mode="numeric", length=nrow(x))
ans.tmp <- x[i,]
res[i] <- length(ans.tmp[ans.tmp==0])
print(res)
}
return(res)
}
однако после того, как я получил эту работу, он возвращает только общую сумму O в образце.
Я был бы признателен за помощь в этом, так как я под некоторым давление времени, и я хотел бы иметь возможность решать такие проблемы в R в будущем.
данные по образца включенные для воспроизводимости:
structure(list(X = 1:6, X100 = c(70L, NA, 80L, 0L, 40L, NA),
X10 = c(30L, NA, NA, NA, NA, NA), X1 = c(50L, NA, NA, NA,
NA, NA), X11 = c(50L, NA, NA, NA, NA, NA), X12 = c(30L, NA,
NA, NA, NA, NA), X13 = c(50L, NA, NA, NA, NA, NA), X14 = c(70L,
NA, NA, NA, NA, NA), X15 = c(60L, NA, NA, NA, NA, NA), X158 = c(30L,
NA, NA, NA, NA, NA), X159 = c(50L, NA, NA, NA, NA, NA), X160 = c(80L,
NA, NA, NA, NA, NA), X16 = c(50L, NA, NA, NA, NA, NA), X161 = c(40L,
NA, NA, NA, NA, NA), X162 = c(100L, NA, NA, NA, NA, NA),
X163 = c(50L, NA, NA, NA, NA, NA), X164 = c(0L, NA, NA, NA,
NA, NA), X165 = c(0L, NA, NA, NA, NA, NA), X166 = c(20L,
NA, NA, NA, NA, NA), X167 = c(0L, NA, NA, NA, NA, NA), X168 = c(30L,
NA, NA, NA, NA, NA), X169 = c(100L, NA, NA, NA, NA, NA),
X170 = c(30L, NA, NA, NA, NA, NA), X17 = c(40L, NA, NA, NA,
NA, NA), X171 = c(50L, NA, NA, NA, NA, NA), X172 = c(20L,
NA, NA, NA, NA, NA), X173 = c(30L, NA, NA, NA, NA, NA), X174 = c(20L,
NA, NA, NA, NA, NA), X175 = c(30L, NA, NA, NA, NA, NA), X176 = c(10L,
NA, NA, NA, NA, NA), X177 = c(70L, NA, NA, NA, NA, NA), X178 = c(40L,
NA, NA, NA, NA, NA), X179 = c(70L, NA, NA, NA, NA, NA), X180 = c(0L,
NA, NA, NA, NA, NA), X18 = c(30L, NA, NA, NA, NA, NA), X181 = c(100L,
NA, NA, NA, NA, NA), X182 = c(100L, NA, NA, NA, NA, NA),
X183 = c(20L, NA, NA, NA, NA, NA), X184 = c(80L, NA, NA,
NA, NA, NA), X185 = c(90L, NA, NA, NA, NA, NA), X186 = c(0L,
NA, NA, NA, NA, NA), X187 = c(10L, NA, NA, NA, NA, NA), X188 = c(100L,
NA, NA, NA, NA, NA), X189 = c(100L, NA, NA, NA, NA, NA),
X190 = c(0L, NA, NA, NA, NA, NA), X19 = c(100L, NA, NA, NA,
NA, NA), X191 = c(0L, NA, NA, NA, NA, NA), X192 = c(90L,
NA, NA, NA, NA, NA), X193 = c(50L, NA, NA, NA, NA, NA), X194 = c(100L,
NA, NA, NA, NA, NA), X195 = c(10L, NA, NA, NA, NA, NA), X196 = c(100L,
NA, NA, NA, NA, NA), X197 = c(20L, NA, NA, NA, NA, NA), X198 = c(40L,
NA, NA, NA, NA, NA), X199 = c(20L, NA, NA, NA, NA, NA), X200 = c(0L,
NA, NA, NA, NA, NA), X20 = c(0L, NA, NA, NA, NA, NA), X201 = c(0L,
NA, NA, NA, NA, NA), X202 = c(20L, NA, NA, NA, NA, NA), X203 = c(20L,
NA, NA, NA, NA, NA), X204 = c(80L, NA, NA, NA, NA, NA), X205 = c(0L,
NA, NA, NA, NA, NA), X206 = c(80L, NA, NA, NA, NA, NA), X207 = c(0L,
NA, NA, NA, NA, NA), X2 = c(10L, NA, NA, NA, NA, NA), X21 = c(0L,
NA, NA, NA, NA, NA), X22 = c(100L, NA, NA, NA, NA, NA), X23 = c(50L,
NA, NA, NA, NA, NA), X24 = c(50L, NA, NA, NA, NA, NA), X25 = c(70L,
NA, NA, NA, NA, NA), X26 = c(60L, NA, NA, NA, NA, NA), X27 = c(40L,
NA, NA, NA, NA, NA), X28 = c(20L, NA, NA, NA, NA, NA), X29 = c(0L,
NA, NA, NA, NA, NA), X30 = c(90L, NA, NA, NA, NA, NA), X3 = c(0L,
NA, NA, NA, NA, NA), X31 = c(50L, NA, NA, NA, NA, NA), X32 = c(50L,
NA, NA, NA, NA, NA), X33 = c(0L, NA, NA, NA, NA, NA), X34 = c(50L,
NA, NA, NA, NA, NA), X35 = c(90L, NA, NA, NA, NA, NA), X36 = c(50L,
NA, NA, NA, NA, NA), X37 = c(60L, NA, NA, NA, NA, NA), X38 = c(40L,
NA, NA, NA, NA, NA), X39 = c(50L, NA, NA, NA, NA, NA), X40 = c(0L,
NA, NA, NA, NA, NA), X4 = c(50L, NA, NA, NA, NA, NA), X41 = c(90L,
NA, NA, NA, NA, NA), X42 = c(80L, NA, NA, NA, NA, NA), X43 = c(50L,
NA, NA, NA, NA, NA), X44 = c(80L, NA, NA, NA, NA, NA), X45 = c(80L,
NA, NA, NA, NA, NA), X46 = c(0L, NA, NA, NA, NA, NA), X47 = c(80L,
NA, NA, NA, NA, NA), X48 = c(20L, NA, NA, NA, NA, NA), X49 = c(100L,
NA, NA, NA, NA, NA), X50 = c(0L, NA, NA, NA, NA, NA), X5 = c(0L,
NA, NA, NA, NA, NA), X51 = c(80L, 100L, 70L, 100L, 0L, 60L
), X52 = c(10L, 0L, 0L, 0L, 0L, 20L), X53 = c(40L, 40L, 70L,
20L, 90L, 50L), X54 = c(0L, 10L, 0L, 50L, 50L, 0L), X55 = c(20L,
80L, 90L, 80L, 30L, 0L), X56 = c(100L, 100L, 50L, 100L, 80L,
100L), X57 = c(60L, 0L, 100L, 70L, 100L, 80L), X58 = c(100L,
100L, 100L, 50L, 100L, 100L), X59 = c(80L, 50L, 80L, 0L,
30L, 50L), X60 = c(70L, 50L, 60L, 50L, 100L, 100L), X6 = c(100L,
NA, NA, NA, NA, NA), X61 = c(50L, 50L, 50L, 30L, 70L, 50L
), X62 = c(20L, 50L, 40L, 40L, 50L, 100L), X63 = c(50L, 0L,
100L, 10L, 50L, 100L), X64 = c(60L, 30L, 0L, 50L, 50L, 50L
), X65 = c(50L, 50L, 70L, 80L, 50L, 50L), X66 = c(70L, 40L,
10L, 90L, 60L, 50L), X67 = c(30L, 50L, 50L, 0L, 50L, 60L),
X68 = c(30L, 0L, 0L, 40L, 70L, 80L), X69 = c(30L, NA, 70L,
10L, 0L, 20L), X70 = c(80L, NA, 50L, 50L, 70L, 100L), X7 = c(100L,
NA, NA, NA, NA, NA), X71 = c(70L, NA, 50L, 100L, 100L, 100L
), X72 = c(60L, NA, 70L, 50L, 80L, 50L), X73 = c(80L, NA,
80L, 80L, 80L, NA), X74 = c(50L, NA, 50L, 0L, 50L, NA), X75 = c(30L,
NA, 70L, 10L, 80L, NA), X76 = c(70L, NA, 40L, 80L, 100L,
NA), X77 = c(80L, NA, 50L, 100L, 40L, NA), X78 = c(80L, NA,
0L, 0L, 0L, NA), X79 = c(80L, NA, 50L, 50L, 50L, NA), X80 = c(40L,
NA, 90L, 70L, 60L, NA), X8 = c(50L, NA, NA, NA, NA, NA),
X81 = c(70L, NA, 60L, 40L, 80L, NA), X82 = c(80L, NA, 100L,
60L, 60L, NA), X83 = c(30L, NA, 100L, 30L, 0L, NA), X84 = c(80L,
NA, 0L, 60L, 100L, NA), X85 = c(80L, NA, 50L, 40L, 30L, NA
), X86 = c(50L, NA, 90L, 50L, 50L, NA), X87 = c(80L, NA,
50L, 70L, 20L, NA), X88 = c(40L, NA, 70L, 30L, 90L, NA),
X89 = c(50L, NA, 50L, 80L, 80L, NA), X90 = c(90L, NA, 100L,
60L, 100L, NA), X91 = c(0L, NA, 0L, 0L, 0L, NA), X9 = c(100L,
NA, NA, NA, NA, NA), X92 = c(50L, NA, 70L, 90L, 80L, NA),
X93 = c(40L, NA, 50L, 50L, 50L, NA), X94 = c(40L, NA, 0L,
60L, 40L, NA), X95 = c(90L, NA, 100L, 40L, 50L, NA), X96 = c(50L,
NA, 50L, 50L, 50L, NA), X97 = c(60L, NA, 60L, 100L, 50L,
NA), X98 = c(40L, NA, 40L, 0L, 0L, NA), X99 = c(30L, NA,
0L, 50L, 70L, NA)), .Names = c("X", "X100", "X10", "X1",
"X11", "X12", "X13", "X14", "X15", "X158", "X159", "X160", "X16",
"X161", "X162", "X163", "X164", "X165", "X166", "X167", "X168",
"X169", "X170", "X17", "X171", "X172", "X173", "X174", "X175",
"X176", "X177", "X178", "X179", "X180", "X18", "X181", "X182",
"X183", "X184", "X185", "X186", "X187", "X188", "X189", "X190",
"X19", "X191", "X192", "X193", "X194", "X195", "X196", "X197",
"X198", "X199", "X200", "X20", "X201", "X202", "X203", "X204",
"X205", "X206", "X207", "X2", "X21", "X22", "X23", "X24", "X25",
"X26", "X27", "X28", "X29", "X30", "X3", "X31", "X32", "X33",
"X34", "X35", "X36", "X37", "X38", "X39", "X40", "X4", "X41",
"X42", "X43", "X44", "X45", "X46", "X47", "X48", "X49", "X50",
"X5", "X51", "X52", "X53", "X54", "X55", "X56", "X57", "X58",
"X59", "X60", "X6", "X61", "X62", "X63", "X64", "X65", "X66",
"X67", "X68", "X69", "X70", "X7", "X71", "X72", "X73", "X74",
"X75", "X76", "X77", "X78", "X79", "X80", "X8", "X81", "X82",
"X83", "X84", "X85", "X86", "X87", "X88", "X89", "X90", "X91",
"X9", "X92", "X93", "X94", "X95", "X96", "X97", "X98", "X99"), row.names = c(NA,
6L), class = "data.frame")
любое понимание будет высоко оценен.
из некоторых попыток над небольшим набором данных выше кажется, что число вычисляется для каждой строки, но когда я возвращаю объект res, он просто дает мне окончательное значение. Как я могу это исправить?
4 ответов
есть два способа использования apply
семейные функции. Либо вы делаете
apply(mat, 1, sum, na.rm=TRUE)
если вы хотите применить функцию sum()
для каждой строки, передавая дополнительные параметры, такие как na.rm=TRUE
. Или вы можете сделать
apply(mat, 1, foo)
здесь foo()
- это ваша собственная функция, определенная извне, например
foo <- function(x) sum(x==0, na.rm=TRUE)
обратите внимание, что обработка NA также может быть рассмотрена с параметром самой функции, со значением по умолчанию TRUE
, в приведенном выше определении, как в
foo2 <- function(x, no.na=TRUE) sum(x==0, na.rm=no.na)
и вы можете назвать его как apply(mat, 1, foo2, no.na=F)
хотя это действительно не имеет смысла с sum()
функция (если вы не хотите проверить, есть ли значения NA, но в этом случае лучше использовать is.na()
:-).
наконец, вы можете определить свою функцию непосредственно inline как
apply(mat, 1, function(x) sum(x==0, na.rm=TRUE))
в вашем случае, это дает мне
> apply(mat, 1, function(x) sum(x==0, na.rm=TRUE))
1 2 3 4 5 6
22 4 9 8 7 2
что эквивалентно apply(ex, 1, foo)
.
давайте назовем ваш набор данных dat
. Вы можете использовать table()
получить таблицу частот для каждого значения в наборе данных. Если вы хотите применить это ко всем данным в фрейме данных, принудите данные к одному вектору и используйте table()
на результирующем векторе:
table(do.call('c', dat))
это дает вам:
> table(do.call('c', dat))
0 1 2 3 4 5 6 10 20 30 40 50 60 70 80 90 100
52 1 1 1 1 1 1 10 16 21 25 76 19 25 37 14 45
если вы хотите проверить частоты для отдельных столбцов, просто:
apply(dat, 1, table)
для данных в данных.фрейм с именем df
,
sapply(df + 1, tabulate, 101)
создает матрицу 101 x 151, где строки соответствуют 0, 1,..., 100 и столбцы для 151 выборки; матрица может быть удобна для последующего вычисления, а tabulate быстрее, чем таблица.
Я пытаюсь обратиться к постановке проблемы, а не исправлять проблему кодирования в том, что казалось начальным частичным усилием. Чтобы подсчитать количество вхождений в строку, используйте 'apply' с 'table'
> apply(dfrm, 1, table)
$`1`
0 1 10 20 30 40 50 60 70 80 90 100
22 1 5 12 14 12 26 7 10 19 7 16
$`2`
0 2 10 30 40 50 80 100
4 1 1 1 2 6 1 3
$`3`
0 3 10 40 50 60 70 80 90 100
9 1 1 3 13 3 8 3 3 7
$`4`
0 4 10 20 30 40 50 60 70 80 90 100
8 1 3 1 3 5 11 4 3 5 2 5
$`5`
0 5 20 30 40 50 60 70 80 90 100
7 1 1 3 3 13 3 4 7 2 7
$`6`
0 6 20 50 60 80 100
2 1 2 7 2 2 7
и обратите внимание, что этот результат включает в качестве подмножества случай x==0:
> sapply( apply(dfrm, 1, table), function(x) x['0'])
1.0 2.0 3.0 4.0 5.0 6.0
22 4 9 8 7 2