Необязательные именованные аргументы в Mathematica

каков наилучший / канонический способ определения функции с необязательными именованными аргументами? Чтобы сделать его конкретным, давайте создадим функцию foo с именованными аргументами a, b и c, по умолчанию 1, 2 и 3 соответственно. Для сравнения, вот версия foo с позиционными аргументами:

foo[a_:1, b_:2, c_:3] := bar[a,b,c]

вот пример ввода и вывода для версии именованных аргументов foo:

foo[]                  --> bar[1,2,3]
foo[b->7]              --> bar[1,7,3]
foo[a->6, b->7, c->8]  --> bar[6,7,8]

это, конечно, также должно быть легко иметь позиционные аргументы перед именованными аргументами.

3 ответов


я нашел стандартный способ сделать это в документации Mathematica: http://reference.wolfram.com/mathematica/tutorial/SettingUpFunctionsWithOptionalArguments.html

Options[foo] = {a->1, b->2, c->3};  (* defaults *)
foo[OptionsPattern[]] := bar[OptionValue@a, OptionValue@b, OptionValue@c]

ввод "OptionValue" каждый раз немного громоздко. По какой-то причине вы не можете просто сделать глобальную аббревиатура, как ov = OptionValue но вы можете сделать это:

foo[OptionsPattern[]] := Module[{ov},
  ov[x___] := OptionValue[x];
  bar[ov@a, ov@b, ov@c]]

или такой:

With[{ov = OptionValue},
  foo[OptionsPattern[]] := bar[ov@a, ov@b, ov@c]
]

или такой:

$PreRead = ReplaceAll[#, "ov" -> "OptionValue"] &;

foo[OptionsPattern[]] := bar[ov@a, ov@b, ov@c]

да OptionValue может быть немного сложно, потому что это полагается на кусок магии, так что

OptionValue[name] эквивалентно OptionValue[f,name], где f является главой левой стороны правила преобразования, в котором OptionValue[name] появляется.

бросая в явном Automatic обычно делает трюк, поэтому в вашем случае я бы сказал, что решение такое:

Options[foo] = {a -> 1, b -> 2, c -> 3};
foo[OptionsPattern[]] := 
  bar @@ (OptionValue[Automatic, #] &) /@ First /@ Options[foo] 

кстати, параметры, используемые для сопоставления с opts:___?OptionQ, а затем поиск значений параметров вручную как {a,b,c}/.Flatten[{opts}]. Проверка шаблона OptionQ все еще вокруг (хотя и не документировано), но OptionValue подход имеет то преимущество, что вы получаете предупреждения за несуществующие варианты (например,foo[d->3]). Это также относится и к вашему второму ответу, но не к тому, который вы приняли.


Я брошу это возможное решение в микс:

foo[opts___Rule] := Module[{f},
  f@a = 1; (* defaults... *)
  f@b = 2;
  f@c = 3;
  each[a_->v_, {opts}, f@a = v];

  Return[bar[f@a, f@b, f@c]]
]

мне нравится его лаконичность, но я не думаю, что это стандартный способ. Есть готы, которые так это делают?

PS, он использует следующую удобную функцию утилиты:

SetAttributes[each, HoldAll];                (* each[pattern, list, body]     *)
each[pat_, lst_, bod_] :=                    (*  converts pattern to body for *)
  Scan[Replace[#, pat:>bod]&, Evaluate@lst]  (*   each element of list.       *)