Python: найти область многоугольника из координат xyz
Я пытаюсь использовать shapely.geometry.Polygon
модуль для поиска области полигонов, но он выполняет все вычисления на xy
самолет. Это хорошо для некоторых из моих полигонов, но у других есть z
измерение тоже, так что это не совсем то, что я хотел бы.
есть ли пакет, который либо даст мне площадь плоского многоугольника из xyz
координаты или альтернативно пакет или алгоритм для поворота многоугольника на xy
самолет, чтобы я мог использовать shapely.geometry.Polygon().area
?
полигоны представлены в виде списка кортежей в виде [(x1,y1,z1),(x2,y2,z3),...(xn,yn,zn)]
.
4 ответов
вот вывод формулы для вычисления площади 3D-плоского многоугольника
вот код Python, который его реализует:
#determinant of matrix a
def det(a):
return a[0][0]*a[1][1]*a[2][2] + a[0][1]*a[1][2]*a[2][0] + a[0][2]*a[1][0]*a[2][1] - a[0][2]*a[1][1]*a[2][0] - a[0][1]*a[1][0]*a[2][2] - a[0][0]*a[1][2]*a[2][1]
#unit normal vector of plane defined by points a, b, and c
def unit_normal(a, b, c):
x = det([[1,a[1],a[2]],
[1,b[1],b[2]],
[1,c[1],c[2]]])
y = det([[a[0],1,a[2]],
[b[0],1,b[2]],
[c[0],1,c[2]]])
z = det([[a[0],a[1],1],
[b[0],b[1],1],
[c[0],c[1],1]])
magnitude = (x**2 + y**2 + z**2)**.5
return (x/magnitude, y/magnitude, z/magnitude)
#dot product of vectors a and b
def dot(a, b):
return a[0]*b[0] + a[1]*b[1] + a[2]*b[2]
#cross product of vectors a and b
def cross(a, b):
x = a[1] * b[2] - a[2] * b[1]
y = a[2] * b[0] - a[0] * b[2]
z = a[0] * b[1] - a[1] * b[0]
return (x, y, z)
#area of polygon poly
def area(poly):
if len(poly) < 3: # not a plane - no area
return 0
total = [0, 0, 0]
for i in range(len(poly)):
vi1 = poly[i]
if i is len(poly)-1:
vi2 = poly[0]
else:
vi2 = poly[i+1]
prod = cross(vi1, vi2)
total[0] += prod[0]
total[1] += prod[1]
total[2] += prod[2]
result = dot(total, unit_normal(poly[0], poly[1], poly[2]))
return abs(result/2)
и чтобы проверить это, вот квадрат 10x5, который наклоняется:
>>> poly = [[0, 0, 0], [10, 0, 0], [10, 3, 4], [0, 3, 4]]
>>> poly_translated = [[0+5, 0+5, 0+5], [10+5, 0+5, 0+5], [10+5, 3+5, 4+5], [0+5, 3+5, 4+5]]
>>> area(poly)
50.0
>>> area(poly_translated)
50.0
>>> area([[0,0,0],[1,1,1]])
0
Это можно немного очистить (матричные и векторные классы сделают его лучше, если они у вас есть, или стандартные реализации детерминанта/кросс-продукта/точечного продукта), но это должно быть концептуально обосновано.
Это последний код, который я использовал. Он не использует shapely, но реализует теорему стока для прямого вычисления области. Он основан на ответе @Tom Smilack, который показывает, как это сделать без numpy.
import numpy as np
#unit normal vector of plane defined by points a, b, and c
def unit_normal(a, b, c):
x = np.linalg.det([[1,a[1],a[2]],
[1,b[1],b[2]],
[1,c[1],c[2]]])
y = np.linalg.det([[a[0],1,a[2]],
[b[0],1,b[2]],
[c[0],1,c[2]]])
z = np.linalg.det([[a[0],a[1],1],
[b[0],b[1],1],
[c[0],c[1],1]])
magnitude = (x**2 + y**2 + z**2)**.5
return (x/magnitude, y/magnitude, z/magnitude)
#area of polygon poly
def poly_area(poly):
if len(poly) < 3: # not a plane - no area
return 0
total = [0, 0, 0]
N = len(poly)
for i in range(N):
vi1 = poly[i]
vi2 = poly[(i+1) % N]
prod = np.cross(vi1, vi2)
total[0] += prod[0]
total[1] += prod[1]
total[2] += prod[2]
result = np.dot(total, unit_normal(poly[0], poly[1], poly[2]))
return abs(result/2)
Fyi, вот тот же алгоритм в Mathematica, с детским модульным тестом
ClearAll[vertexPairs, testPoly, area3D, planeUnitNormal, pairwise];
pairwise[list_, fn_] := MapThread[fn, {Drop[list, -1], Drop[list, 1]}];
vertexPairs[Polygon[{points___}]] := Append[{points}, First[{points}]];
testPoly = Polygon[{{20, -30, 0}, {40, -30, 0}, {40, -30, 20}, {20, -30, 20}}];
planeUnitNormal[Polygon[{points___}]] :=
With[{ps = Take[{points}, 3]},
With[{p0 = First[ps]},
With[{qs = (# - p0) & /@ Rest[ps]},
Normalize[Cross @@ qs]]]];
area3D[p : Polygon[{polys___}]] :=
With[{n = planeUnitNormal[p], vs = vertexPairs[p]},
With[{areas = (Dot[n, #]) & /@ pairwise[vs, Cross]},
Plus @@ areas/2]];
area3D[testPoly]
площадь 2D-полигона может быть вычислена с использованием Numpy в качестве однострочного...
poly_Area(vertices) = np.sum( [0.5, -0.5] * vertices * np.roll( np.roll(vertices, 1, axis=0), 1, axis=1) )