Python pandas: как удалить значения nan и-inf
у меня есть следующий dataframe
time X Y X_t0 X_tp0 X_t1 X_tp1 X_t2 X_tp2
0 0.002876 0 10 0 NaN NaN NaN NaN NaN
1 0.002986 0 10 0 NaN 0 NaN NaN NaN
2 0.037367 1 10 1 1.000000 0 NaN 0 NaN
3 0.037374 2 10 2 0.500000 1 1.000000 0 NaN
4 0.037389 3 10 3 0.333333 2 0.500000 1 1.000000
5 0.037393 4 10 4 0.250000 3 0.333333 2 0.500000
....
1030308 9.962213 256 268 256 0.000000 256 0.003906 255 0.003922
1030309 10.041799 0 268 0 -inf 256 0.000000 256 0.003906
1030310 10.118960 0 268 0 NaN 0 -inf 256 0.000000
Я попытался со следующим
df.dropna(inplace=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.40)
X_train = X_train.drop('time', axis=1)
X_train = X_train.drop('X_t1', axis=1)
X_train = X_train.drop('X_t2', axis=1)
X_test = X_test.drop('time', axis=1)
X_test = X_test.drop('X_t1', axis=1)
X_test = X_test.drop('X_t2', axis=1)
X_test.fillna(X_test.mean(), inplace=True)
X_train.fillna(X_train.mean(), inplace=True)
y_train.fillna(y_train.mean(), inplace=True)
тем не менее, я все еще получаю эту ошибку ValueError: Input contains NaN, infinity or a value too large for dtype('float32').
всякий раз, когда я стараюсь соответствовать регрессионной модели fit(X_train, y_train)
как мы можем удалить NaN
и -inf
значения в то же время?
2 ответов
использовать pd.DataFrame.isin
и проверьте строки, которые имеют какие-либо с pd.DataFrame.any
. Наконец, используйте логический массив для среза фрейма данных.
df[~df.isin([np.nan, np.inf, -np.inf]).any(1)]
time X Y X_t0 X_tp0 X_t1 X_tp1 X_t2 X_tp2
4 0.037389 3 10 3 0.333333 2.0 0.500000 1.0 1.000000
5 0.037393 4 10 4 0.250000 3.0 0.333333 2.0 0.500000
1030308 9.962213 256 268 256 0.000000 256.0 0.003906 255.0 0.003922
вы можете заменить inf
и -inf
С NaN
, а затем выберите ненулевых строк.
df[df.replace([np.inf, -np.inf], np.nan).notnull().all(axis=1)] # .astype(np.float64) ?
или
df.replace([np.inf, -np.inf], np.nan).dropna(axis=1)
Проверьте тип возвращаемых столбцов, чтобы убедиться, что все они соответствуют ожиданиям (например, np.float32/64) через df.info()
.