Реализация Python лапласиана обнаружения гауссова края
Я ищу эквивалентную реализацию лапласиана обнаружения гауссова края.
в matlab мы используем следующую функцию
[BW,threshold] = edge(I,'log',...)
в python существует функция для вычисления лапласиана Гаусса. Это не дает края назад определенно.
scipy.ndimage.filters.gaussian_laplace
любой указатель на онлайн-реализацию или код
спасибо
2 ответов
то, что MATLAB edge () должно быть
- Вычислить Журнала
- вычислить нулевые пересечения в журнале
- вычислить порог для локальной разности журналов
- Edge pixels = пересечение нуля и локальная разница > порог
фильтр журнала scipy только делает шаг 1 выше. Я реализовал следующий код, чтобы имитировать Шаг 2~4 выше:
import scipy as sp
import numpy as np
import scipy.ndimage as nd
import matplotlib.pyplot as plt
lena = sp.misc.lena()
LoG = nd.gaussian_laplace(lena, 2)
thres = np.absolute(LoG).mean() * 0.75
output = sp.zeros(LoG.shape)
w = output.shape[1]
h = output.shape[0]
for y in range(1, h - 1):
for x in range(1, w - 1):
patch = LoG[y-1:y+2, x-1:x+2]
p = LoG[y, x]
maxP = patch.max()
minP = patch.min()
if (p > 0):
zeroCross = True if minP < 0 else False
else:
zeroCross = True if maxP > 0 else False
if ((maxP - minP) > thres) and zeroCross:
output[y, x] = 1
plt.imshow(output)
plt.show()
Это, конечно, медленно и, вероятно, не идиоматично, поскольку я также новичок в Python, но должен показать идею. Приветствуется также любое предложение о том, как его улучшить.
Я немного поиграл с кодом ycyeh (спасибо за его предоставление). В моих приложениях я получил лучшие результаты с использованием выходных значений, пропорциональных диапазону min-max, чем просто двоичные 0s и 1s. (Мне тогда тоже больше не нужен был молотилка, но можно легко применить молотилку на результат.) Также я изменил циклы на операции массива numpy для более быстрого выполнения.
import numpy as np
import scipy.misc
import cv2 # using opencv as I am not too familiar w/ scipy yet, sorry
def laplace_of_gaussian(gray_img, sigma=1., kappa=0.75, pad=False):
"""
Applies Laplacian of Gaussians to grayscale image.
:param gray_img: image to apply LoG to
:param sigma: Gauss sigma of Gaussian applied to image, <= 0. for none
:param kappa: difference threshold as factor to mean of image values, <= 0 for none
:param pad: flag to pad output w/ zero border, keeping input image size
"""
assert len(gray_img.shape) == 2
img = cv2.GaussianBlur(gray_img, (0, 0), sigma) if 0. < sigma else gray_img
img = cv2.Laplacian(img, cv2.CV_64F)
rows, cols = img.shape[:2]
# min/max of 3x3-neighbourhoods
min_map = np.minimum.reduce(list(img[r:rows-2+r, c:cols-2+c]
for r in range(3) for c in range(3)))
max_map = np.maximum.reduce(list(img[r:rows-2+r, c:cols-2+c]
for r in range(3) for c in range(3)))
# bool matrix for image value positiv (w/out border pixels)
pos_img = 0 < img[1:rows-1, 1:cols-1]
# bool matrix for min < 0 and 0 < image pixel
neg_min = min_map < 0
neg_min[1 - pos_img] = 0
# bool matrix for 0 < max and image pixel < 0
pos_max = 0 < max_map
pos_max[pos_img] = 0
# sign change at pixel?
zero_cross = neg_min + pos_max
# values: max - min, scaled to 0--255; set to 0 for no sign change
value_scale = 255. / max(1., img.max() - img.min())
values = value_scale * (max_map - min_map)
values[1 - zero_cross] = 0.
# optional thresholding
if 0. <= kappa:
thresh = float(np.absolute(img).mean()) * kappa
values[values < thresh] = 0.
log_img = values.astype(np.uint8)
if pad:
log_img = np.pad(log_img, pad_width=1, mode='constant', constant_values=0)
return log_img
def _main():
"""Test routine"""
# load grayscale image
img = scipy.misc.face() # lena removed from newer scipy versions
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# apply LoG
log = laplace_of_gaussian(img)
# display
cv2.imshow('LoG', log)
cv2.waitKey(0)
if __name__ == '__main__':
_main()