Реализация стека с использованием двух очередей

аналогичный вопрос был задан ранее здесь, но вопрос здесь в обратном, используя две очереди в качестве стека. Вопрос...

учитывая две очереди с их стандартными операциями (enqueue, dequeue, isempty, size), реализовать стек с его стандартными операциями (pop, push, isempty, size).

должно быть два варианты решения.

  • версия A: стек должен быть эффективным при нажатии элемента; и
  • версия B: стек должен быть эффективным при появлении элемента.

меня интересует алгоритм больше, чем любые конкретные языковые реализации. Однако я приветствую решения, выраженные на языках, которые мне знакомы (java,c#, python,В. Б.,javascript, php).

21 ответов


версия A (эффективный толчок):

  • push:
    • enqueue в queue1
  • поп:
    • в то время как размер queue1 больше 1, элементы трубы из queue1 в queue2
    • dequeue и вернуть последний элемент queue1, а затем переключить имена queue1 и queue2

версия B (эффективный pop):

  • push:
    • enqueue в queue2
    • запросите все элементы queue1 в queue2, затем переключите имена queue1 и queue2
  • поп:
    • deqeue из queue1

самый простой (и, возможно, единственный) способ сделать это-толкнуть новые элементы в пустую очередь, а затем освободить другую и enqeuing в ранее пустую очередь. Таким образом, последний всегда находится в начале очереди. Это будет версия B, для версии A вы просто отмените процесс, удалив элементы во вторую очередь, за исключением последней.

Шаг 0:

"Stack"
+---+---+---+---+---+
|   |   |   |   |   |
+---+---+---+---+---+

Queue A                Queue B
+---+---+---+---+---+  +---+---+---+---+---+
|   |   |   |   |   |  |   |   |   |   |   |
+---+---+---+---+---+  +---+---+---+---+---+

Шаг 1:

"Stack"
+---+---+---+---+---+
| 1 |   |   |   |   |
+---+---+---+---+---+

Queue A                Queue B
+---+---+---+---+---+  +---+---+---+---+---+
| 1 |   |   |   |   |  |   |   |   |   |   |
+---+---+---+---+---+  +---+---+---+---+---+

мы можем сделать это с одной очереди:

доставка:

  1. enqueue новый элемент.
  2. если n - количество элементов в очереди, затем снять и вставить элемент n-1 раза.

поп:

  1. dequeue

.

push 1


front                     
+----+----+----+----+----+----+
| 1  |    |    |    |    |    |    insert 1
+----+----+----+----+----+----+


push2

front                     
+----+----+----+----+----+----+
| 1  | 2  |    |    |    |    |    insert 2
+----+----+----+----+----+----+

     front                     
+----+----+----+----+----+----+
|    | 2  |  1 |    |    |    |    remove and insert 1
+----+----+----+----+----+----+




 insert 3


      front                     
+----+----+----+----+----+----+
|    | 2  |  1 |  3 |    |    |    insert 3
+----+----+----+----+----+----+

           front                     
+----+----+----+----+----+----+
|    |    |  1 |  3 |  2 |    |    remove and insert 2
+----+----+----+----+----+----+

                front                     
+----+----+----+----+----+----+
|    |    |    |  3 |  2 |  1 |    remove and insert 1
+----+----+----+----+----+----+

пример реализации:

int stack_pop (queue_data *q)
{
  return queue_remove (q);
}

void stack_push (queue_data *q, int val)
{
  int old_count = queue_get_element_count (q), i;

  queue_insert (q, val);
  for (i=0; i<old_count; i++)
  {
    queue_insert (q, queue_remove (q));
  }
}

import java.util.*;

/**
 *
 * @author Mahmood
 */
public class StackImplUsingQueues {

    Queue<Integer> q1 = new LinkedList<Integer>();
    Queue<Integer> q2 = new LinkedList<Integer>();

    public int pop() {
        if (q1.peek() == null) {
            System.out.println("The stack is empty, nothing to return");
            int i = 0;
            return i;
        } else {
            int pop = q1.remove();
            return pop;
        }
    }

    public void push(int data) {

        if (q1.peek() == null) {
            q1.add(data);
        } else {
            for (int i = q1.size(); i > 0; i--) {
                q2.add(q1.remove());
            }
            q1.add(data);
            for (int j = q2.size(); j > 0; j--) {
                q1.add(q2.remove());
            }

        }
    }

    public static void main(String[] args) {
        StackImplUsingQueues s1 = new StackImplUsingQueues();
        //       Stack s1 = new Stack();
        s1.push(1);
        s1.push(2);
        s1.push(3);
        s1.push(4);
        s1.push(5);
        s1.push(6);
        s1.push(7);
        s1.push(8);
        s1.push(9);
        s1.push(10);
        // s1.push(6);
        System.out.println("1st = " + s1.pop());
        System.out.println("2nd = " + s1.pop());
        System.out.println("3rd = " + s1.pop());
        System.out.println("4th = " + s1.pop());
        System.out.println("5th = " + s1.pop());
        System.out.println("6th = " + s1.pop());
        System.out.println("7th = " + s1.pop());
        System.out.println("8th = " + s1.pop());
        System.out.println("9th = " + s1.pop());
        System.out.println("10th= " + s1.pop());
    }
}

можем ли мы просто использовать одну очередь для реализации стека? Я могу использовать две очереди, но рассмотрение одной очереди было бы более эффективным. Вот код:

    public void Push(T val)
    {
        queLower.Enqueue(val);
    }

    public  T Pop()
    {

        if (queLower.Count == 0 )
        {
            Console.Write("Stack is empty!");
            return default(T);

         }
        if (queLower.Count > 0)
        {
            for (int i = 0; i < queLower.Count - 1;i++ )
            {
                queLower.Enqueue(queLower.Dequeue ());
           }
                    }

        return queLower.Dequeue();

    }

queue<int> q1, q2;
int i = 0;

void push(int v) {
  if( q1.empty() && q2.empty() ) {
     q1.push(v);
     i = 0;
  }
  else {
     if( i == 0 ) {
        while( !q1.empty() ) q2.push(q1.pop());
        q1.push(v);
        i = 1-i;
     }
     else {
        while( !q2.empty() ) q1.push(q2.pop());
        q2.push(v);
        i = 1-i;
     }
  }
}

int pop() {
   if( q1.empty() && q2.empty() ) return -1;
   if( i == 1 ) {
      if( !q1.empty() )
           return q1.pop();
      else if( !q2.empty() )
           return q2.pop();
   }
   else {
      if( !q2.empty() )
           return q2.pop();
      else if( !q1.empty() )
           return q1.pop();
   }
}

вот мой ответ - где " поп " - это неэффективно. Кажется, что все алгоритмы, которые сразу приходят на ум, имеют сложность N, где N-размер списка: хотите ли вы работать над " pop "или работать над "push"

алгоритм, где списки возвращаются, а четвертый может быть лучше, поскольку расчет размера не требуется, хотя вам все равно нужно зацикливаться и сравнивать с пустым.

вы можете доказать, что этот алгоритм не может быть написан быстрее, чем N отмечая, что информация о последнем элементе в очереди доступна только через знание размера очереди, и что вы должны уничтожить данные, чтобы добраться до этого элемента, следовательно, 2-я очередь.

единственный способ сделать это быстрее - не использовать очереди в первую очередь.

from data_structures import queue

class stack(object):
    def __init__(self):
        q1= queue 
        q2= queue #only contains one item at most. a temp var. (bad?)

    def push(self, item):
        q1.enque(item) #just stick it in the first queue.

    #Pop is inefficient
    def pop(self):
        #'spin' the queues until q1 is ready to pop the right value. 
        for N 0 to self.size-1
            q2.enqueue(q1.dequeue)
            q1.enqueue(q2.dequeue)
        return q1.dequeue()

    @property
    def size(self):
        return q1.size + q2.size

    @property
    def isempty(self):
        if self.size > 0:
           return True
        else
           return False

вот мое решение работает за O(1) в среднем случае. Есть две очереди: in и out. См. ниже псевдокод:

PUSH(X) = in.enqueue(X)

POP: X =
  if (out.isEmpty and !in.isEmpty)
    DUMP(in, out)
  return out.dequeue

DUMP(A, B) =
  if (!A.isEmpty)
    x = A.dequeue()
    DUMP(A, B)
    B.enqueue(x)

Как уже упоминалось, не будет ли одна очередь делать трюк? Это, вероятно, менее практично, но немного щегольски.

push(x):
enqueue(x)
for(queueSize - 1)
   enqueue(dequeue())

pop(x):
dequeue()

вот простой псевдо-код, push-O( n), pop / peek-O(1):

Qpush = Qinstance()
Qpop = Qinstance()

def stack.push(item):
    Qpush.add(item)
    while Qpop.peek() != null: //transfer Qpop into Qpush
        Qpush.add(Qpop.remove()) 
    swap = Qpush
    Qpush = Qpop
    Qpop = swap

def stack.pop():
    return Qpop.remove()

def stack.peek():
    return Qpop.peek()

пусть S1 и S2-два стека, которые будут использоваться в реализации очередей.

struct Stack 
{ struct Queue *Q1;
  struct Queue *Q2;
}

мы уверены, что одна очередь пуста всегда.

операция Push: Какая бы очередь не была пустой, вставьте в нее элемент.

  • Проверьте, пуста ли очередь Q1 или нет. Если Q1 пуст, то запросите элемент в нем.
  • в противном случае запросите элемент в Q1.

Push (struct Stack *S, int data) { if(isEmptyQueue(S->Q1) EnQueue(S->Q2, data); else EnQueue(S->Q1, data); }

время Асимптотика: O(1)

Операция Pop: передача N-1 элементов в другую очередь и удаление последнего из очереди для выполнения операции pop.

  • если очередь Q1 не пуста, передайте N-1 элементов из Q1 в Q2, а затем снимите последний элемент Q1 и верните его.
  • если очередь Q2 не пуста, то передайте N-1 элементов из Q2 в Q1, а затем снимите последний элемент Q2 и верните он.

`

int Pop(struct Stack *S){
int i, size;
if(IsEmptyQueue(S->Q2)) 
{
size=size(S->Q1);
i=0;
while(i<size-1)
{ EnQueue(S->Q2, Dequeue(S->Q1)) ;
  i++;
}
return DeQueue(S->Q1);  
}
else{
size=size(S->Q2);
while(i<size-1)
EnQueue(S->Q1, Dequeue(S->Q2)) ;
i++;
}
return DeQueue(S->Q2);
} }

сложность времени: время выполнения операции pop составляет O (n), поскольку каждый раз, когда вызывается pop, мы передаем все элементы из одной очереди в oter.


Q1 = [10, 15, 20, 25, 30]
Q2 = []

exp:
{   
    dequeue n-1 element from Q1 and enqueue into Q2: Q2 == [10, 15, 20, 25]

    now Q1 dequeue gives "30" that inserted last and working as stack
}

swap Q1 and Q2 then GOTO exp

import java.util.LinkedList;
import java.util.Queue;

class MyStack {
    Queue<Integer> queue1 = new LinkedList<Integer>();
    Queue<Integer> queue2 = new LinkedList<Integer>();

    // Push element x onto stack.
    public void push(int x) {
        if(isEmpty()){
            queue1.offer(x);
        }else{
            if(queue1.size()>0){
                queue2.offer(x);
                int size = queue1.size();
                while(size>0){
                    queue2.offer(queue1.poll());
                    size--;
                }
            }else if(queue2.size()>0){
                queue1.offer(x);
                int size = queue2.size();
                while(size>0){
                    queue1.offer(queue2.poll());
                    size--;
                }
            }
        }
    }

    // Removes the element on top of the stack.
    public void pop() {
        if(queue1.size()>0){
            queue1.poll();
        }else if(queue2.size()>0){
            queue2.poll();
        }
    }

    // Get the top element. You can make it more perfect just example
    public int top() {
       if(queue1.size()>0){
            return queue1.peek();
        }else if(queue2.size()>0){
            return queue2.peek();
        }
        return 0;
    }

    // Return whether the stack is empty.
    public boolean isEmpty() {
        return queue1.isEmpty() && queue2.isEmpty();
    }
}

вот еще один вариант:

для нажимаем : -Добавить первый элемент в очереди 1. -При добавлении второго элемента и так далее, Сначала запросите элемент в очереди 2, а затем скопируйте весь элемент из очереди 1 в очередь 2. - для POP просто dequeue элемент из очереди от вас вставлен последний элемент.

и

public void push(int data){
if (queue1.isEmpty()){
    queue1.enqueue(data);
}  else {
queue2.enqueue(data);
while(!queue1.isEmpty())
Queue2.enqueue(queue1.dequeue());
//EXCHANGE THE NAMES OF QUEUE 1 and QUEUE2

} }

public int pop(){
int popItem=queue2.dequeue();
return popItem;
}'

есть одна проблема, я не могу понять, как переименовать очереди???


#include <bits/stdc++.h>
using namespace std;
queue<int>Q;
stack<int>Stk;
void PRINT(stack<int>ss , queue<int>qq) {
    while( ss.size() ) {
        cout << ss.top() << " " ;
        ss.pop();
    }
    puts("");
    while( qq.size() ) {
        cout << qq.front() << " " ;
        qq.pop();
    }
    puts("\n----------------------------------");
}
void POP() {
    queue<int>Tmp ;
    while( Q.size() > 1 ) {
        Tmp.push( Q.front()  );
        Q.pop();
    }
    cout << Q.front() << " " << Stk.top() << endl;
    Q.pop() , Stk.pop() ;
    Q = Tmp ;
}
void PUSH(int x ) {
    Q.push(x);
    Stk.push(x);
}
int main() {
    while( true ) {
        string typ ;
        cin >> typ ;
        if( typ == "push" ) {
            int x ;
            cin >> x;
            PUSH(x);
        } else POP();
        PRINT(Stk,Q);
    }
}

Код Python, Используя Только Одну Очередь

 class Queue(object):
    def __init__(self):
        self.items=[]
    def enqueue(self,item):
        self.items.insert(0,item)
    def dequeue(self):
        if(not self.isEmpty()):
            return  self.items.pop()
    def isEmpty(self):
        return  self.items==[]
    def size(self):
        return len(self.items)



class stack(object):
        def __init__(self):
            self.q1= Queue()


        def push(self, item):
            self.q1.enqueue(item) 


        def pop(self):
            c=self.q1.size()
            while(c>1):
                self.q1.enqueue(self.q1.dequeue())
                c-=1
            return self.q1.dequeue()



        def size(self):
            return self.q1.size() 


        def isempty(self):
            if self.size > 0:
               return True
            else:
               return False

вот полный рабочий код на C# :

Он был реализован с одной очередью,

push:

1. add new element.
2. Remove elements from Queue (totalsize-1) times and add back to the Queue

поп:

normal remove





 using System;
    using System.Collections.Generic;
    using System.Linq;
    using System.Text;
    using System.Threading.Tasks;

    namespace StackImplimentationUsingQueue
    {
        class Program
        {
            public class Node
            {
                public int data;
                public Node link;
            }
            public class Queue
            {
                public Node rear;
                public Node front;
                public int size = 0;
                public void EnQueue(int data)
                {
                    Node n = new Node();
                    n.data = data;
                    n.link = null;
                    if (rear == null)
                        front = rear = n;
                    else
                    {
                        rear.link = n;
                        rear = n;
                    }
                    size++;
                    Display();
                }
                public Node DeQueue()
                {
                    Node temp = new Node();
                    if (front == null)
                        Console.WriteLine("Empty");
                    else
                    {
                        temp = front;
                        front = front.link;
                        size--;
                    }
                    Display();
                    return temp;
                }
                public void Display()
                {
                    if (size == 0)
                        Console.WriteLine("Empty");
                    else
                    {
                        Console.Clear();
                        Node n = front;
                        while (n != null)
                        {
                            Console.WriteLine(n.data);
                            n = n.link;
                        }
                    }
                }
            }
            public class Stack
            {
                public Queue q;
                public int size = 0;
                public Node top;
                public Stack()
                {
                    q = new Queue();
                }
                public void Push(int data)
                {
                    Node n = new Node();
                    n.data = data;
                    q.EnQueue(data);
                    size++;
                    int counter = size;
                    while (counter > 1)
                    {
                        q.EnQueue(q.DeQueue().data);
                        counter--;
                    }
                }
                public void Pop()
                {
                    q.DeQueue();
                    size--;
                }
            }
            static void Main(string[] args)
            {
                Stack s= new Stack();
                for (int i = 1; i <= 3; i++)
                    s.Push(i);
                for (int i = 1; i < 3; i++)
                    s.Pop();
                Console.ReadKey();
            }
        }
    }

вот очень простое решение, которое использует одну очередь и дает функциональность, такую как стек.

public class CustomStack<T>
{
    Queue<T> que = new Queue<T>();

    public void push(T t) // STACK = LIFO / QUEUE = FIFO
    {

        if( que.Count == 0)
        {
            que.Enqueue(t);
        }
        else
        {
            que.Enqueue(t);
            for (int i = 0; i < que.Count-1; i++)
            {
                var data = que.Dequeue();

                que.Enqueue(data);
            }
        }

    }

    public void pop()
    {

        Console.WriteLine("\nStack Implementation:");
        foreach (var item in que)
        {
            Console.Write("\n" + item.ToString() + "\t");
        }

        var data = que.Dequeue();
        Console.Write("\n Dequeing :" + data);
    }

    public void top()
    {

        Console.Write("\n Top :" + que.Peek());
    }


}

Итак, в приведенном выше классе с именем "CustomStack" я просто проверяю очередь на пустую , если пустая, то вставьте один, а затем на wards insert, а затем удалите insert. По этой логике первое придет последним. Пример: в очереди я вставил 1 и теперь пытаюсь вставить 2. Второй раз удалите 1 и снова вставьте, чтобы он стал в обратном порядке.

спасибо вы.


вот мое решение..

Concept_Behind:: push(struct Stack* S,int data):: эта функция запрашивает первый элемент в Q1 и отдыхает в Q2 pop(struct Stack* S):: Если Q2 не пуст, переносит все элементы в Q1 и возвращает последний элемент в Q2 else (что означает, что Q2 пуст ) переносит все элементы в Q2 и возвращает последний элемент в Q1

Efficiency_Behind:: push(struct Stack*S,int data):: O (1) / / с одиночного enqueue в данные pop(struct Stack* S):: O (n)//с момента передачи худших данных n-1 на pop.

#include<stdio.h>
#include<stdlib.h>
struct Queue{
    int front;
    int rear;
    int *arr;
    int size;
    };
struct Stack {
    struct Queue *Q1;
    struct Queue *Q2;
    };
struct Queue* Qconstructor(int capacity)
{
    struct Queue *Q=malloc(sizeof(struct Queue));
    Q->front=Q->rear=-1;
    Q->size=capacity;
    Q->arr=malloc(Q->size*sizeof(int));
    return Q;
    }
int isEmptyQueue(struct Queue *Q)
{
    return (Q->front==-1);
    }
int isFullQueue(struct Queue *Q)
{
    return ((Q->rear+1) % Q->size ==Q->front);
    }
void enqueue(struct Queue *Q,int data)
{
    if(isFullQueue(Q))
        {
            printf("Queue overflow\n");
            return;}
    Q->rear=Q->rear+1 % Q->size;
    Q->arr[Q->rear]=data;
    if(Q->front==-1)
        Q->front=Q->rear;
        }
int dequeue(struct Queue *Q)
{
    if(isEmptyQueue(Q)){
        printf("Queue underflow\n");
        return;
        }
    int data=Q->arr[Q->front];
    if(Q->front==Q->rear)
        Q->front=-1;
    else
    Q->front=Q->front+1 % Q->size;
    return data;
    }
///////////////////////*************main algo****************////////////////////////
struct Stack* Sconstructor(int capacity)
{
    struct Stack *S=malloc(sizeof(struct Stack));
    S->Q1=Qconstructor(capacity);
    S->Q2=Qconstructor(capacity);
    return S;
}
void push(struct Stack *S,int data)
{
    if(isEmptyQueue(S->Q1))
        enqueue(S->Q1,data);
    else
        enqueue(S->Q2,data);
    }
int pop(struct Stack *S)
{
    int i,tmp;
    if(!isEmptyQueue(S->Q2)){
        for(i=S->Q2->front;i<=S->Q2->rear;i++){
            tmp=dequeue(S->Q2);
            if(isEmptyQueue(S->Q2))
                return tmp;
            else
                enqueue(S->Q1,tmp);
                }
            }
    else{
        for(i=S->Q1->front;i<=S->Q1->rear;i++){
            tmp=dequeue(S->Q1);
            if(isEmptyQueue(S->Q1))
                return tmp;
            else
                enqueue(S->Q2,tmp);
                }
            }
        }
////////////////*************end of main algo my algo************
///////////////*************push() O(1);;;;pop() O(n);;;;*******/////
main()
{
    int size;
    printf("Enter the number of elements in the Stack(made of 2 queue's)::\n");
    scanf("%d",&size);
    struct Stack *S=Sconstructor(size);
    push(S,1);
    push(S,2);
    push(S,3);
    push(S,4);
    printf("%d\n",pop(S));
    push(S,5);
    printf("%d\n",pop(S));
    printf("%d\n",pop(S));
    printf("%d\n",pop(S));
    printf("%d\n",pop(S));
    }

import java.util.LinkedList;
import java.util.Queue;


public class StackQueue {

    static Queue<Integer> Q1 = new LinkedList<Integer>();
    static Queue<Integer> Q2 = new LinkedList<Integer>();
    public static void main(String args[]) {



        push(24);
        push(34);
        push(4);
        push(10);
        push(1);
        push(43);
        push(21);
        System.out.println("Popped element is  "+pop());
        System.out.println("Popped element is  "+pop());
        System.out.println("Popped element is  "+pop());


    }

    public static void push(int data) {

        Q1.add(data);

    }

    public static int pop() {

        if(Q1.isEmpty()) {
        System.out.println("Cannot pop elements ,  Stack is Empty !!"); 
        return -1;
        }
        else
        {
        while(Q1.size() > 1) {
            Q2.add(Q1.remove());
        }
        int element = Q1.remove();
        Queue<Integer> temp = new LinkedList<Integer>();
        temp = Q1;
        Q1 = Q2;
        Q2 = temp;
        return element;
        }
    }
}

#include "stdio.h"
#include "stdlib.h"

typedef struct {
    int *q;
    int size;
    int front;
    int rear;
} Queue;
typedef struct {
    Queue *q1;
    Queue *q2;
} Stack;

int queueIsEmpty(Queue *q) {
    if (q->front == -1 && q->rear == -1) {
        printf("\nQUEUE is EMPTY\n");
        return 1;
    }
    return 0;
}
int queueIsFull(Queue *q) {
    if (q->rear == q->size-1) {
        return 1;
    }
    return 0;
}
int queueTop(Queue *q) {
    if (queueIsEmpty(q)) {
        return -1;
    }
    return q->q[q->front];
}
int queuePop(Queue *q) {
    if (queueIsEmpty(q)) {
        return -1;
    }
    int item = q->q[q->front];
    if (q->front == q->rear) {
        q->front = q->rear = -1;
    }
    else {
        q->front++;
    }
    return item;
}
void queuePush(Queue *q, int val) {
    if (queueIsFull(q)) {
        printf("\nQUEUE is FULL\n");
        return;
    }
    if (queueIsEmpty(q)) {
        q->front++;
        q->rear++;
    } else {
        q->rear++;
    }
    q->q[q->rear] = val;
}
Queue *queueCreate(int maxSize) {
    Queue *q = (Queue*)malloc(sizeof(Queue));
    q->front = q->rear = -1;
    q->size = maxSize;
    q->q = (int*)malloc(sizeof(int)*maxSize);
    return q;
}
/* Create a stack */
void stackCreate(Stack *stack, int maxSize) {
    Stack **s = (Stack**) stack;
    *s = (Stack*)malloc(sizeof(Stack));
    (*s)->q1 = queueCreate(maxSize);
    (*s)->q2 = queueCreate(maxSize);
}

/* Push element x onto stack */
void stackPush(Stack *stack, int element) {
    Stack **s = (Stack**) stack;
    queuePush((*s)->q2, element);
    while (!queueIsEmpty((*s)->q1)) {
        int item = queuePop((*s)->q1);
        queuePush((*s)->q2, item);
    }
    Queue *tmp = (*s)->q1;
    (*s)->q1 = (*s)->q2;
    (*s)->q2 = tmp;
}

/* Removes the element on top of the stack */
void stackPop(Stack *stack) {
    Stack **s = (Stack**) stack;
    queuePop((*s)->q1);
}

/* Get the top element */
int stackTop(Stack *stack) {
    Stack **s = (Stack**) stack;
    if (!queueIsEmpty((*s)->q1)) {
      return queueTop((*s)->q1);
    }
    return -1;
}

/* Return whether the stack is empty */
bool stackEmpty(Stack *stack) {
    Stack **s = (Stack**) stack;
    if (queueIsEmpty((*s)->q1)) {
        return true;
    }
    return false;
}

/* Destroy the stack */
void stackDestroy(Stack *stack) {
    Stack **s = (Stack**) stack;
    free((*s)->q1);
    free((*s)->q2);
    free((*s));
}

int main()
{
  Stack *s = NULL;
  stackCreate((Stack*)&s, 10);
  stackPush((Stack*)&s, 44);
  //stackPop((Stack*)&s);
  printf("\n%d", stackTop((Stack*)&s));
  stackDestroy((Stack*)&s);
  return 0;
}