Создание RDD для сбора результатов итеративного вычисления

Я хотел бы создать RDD для сбора результатов итеративного вычисления .

Как я могу использовать цикл (или любого другого) заменить следующий код:

import org.apache.spark.mllib.random.RandomRDDs._    

val n = 10 

val step1 = normalRDD(sc, n, seed = 1 ) 
val step2 = normalRDD(sc, n, seed = (step1.max).toLong ) 
val result1 = step1.zip(step2) 
val step3 = normalRDD(sc, n, seed = (step2.max).toLong ) 
val result2 = result1.zip(step3) 

...

val step50 = normalRDD(sc, n, seed = (step49.max).toLong ) 
val result49 = result48.zip(step50) 

(создание N step RDDs и zipping затем вместе в конце также будет в порядке, пока 50 RDDs создаются итеративно, чтобы уважать seed = (step (n-1).max) условие)

1 ответов


рекурсивная функция будет работать:

/**
 * The return type is an Option to handle the case of a user specifying
 * a non positive number of steps.
 */
def createZippedNormal(sc : SparkContext, 
                       numPartitions : Int, 
                       numSteps : Int) : Option[RDD[Double]] = {

  @scala.annotation.tailrec   
  def accum(sc : SparkContext, 
            numPartitions : Int, 
            numSteps : Int, 
            currRDD : RDD[Double], 
            seed : Long) : RDD[Double] = {
    if(numSteps <= 0) currRDD
    else {
      val newRDD = normalRDD(sc, numPartitions, seed) 
      accum(sc, numPartitions, numSteps - 1, currRDD.zip(newRDD), newRDD.max)
    }
  }

  if(numSteps <= 0) None
  else Some(accum(sc, numPartitions, numSteps, sc.emptyRDD[Double], 1L))
}