создайте стек таким образом, чтобы getMinimum() был O (1)

Это один из вопросов интервью. Вам нужно создать стек, который содержит целое значение, такое, что функция getMinimum () должна возвращать минимальный элемент в стеке.

например: рассмотрим приведенный ниже пример

case #1

5  --> TOP
1
4
6
2

When getMinimum() is called it should return 1, which is the minimum element 
in the stack. 

case #2

stack.pop()
stack.pop()

Note: Both 5 and 1 are poped out of the stack. So after this, the stack
looks like,

4  --> TOP
6
2

When getMinimum() is called is should return 2 which is the minimum in the 
stack.

Constriants:

  1. getMinimum должен вернуть минимальное значение в O (1)
  2. ограничение пространства также должно учитываться при его проектировании, и если вы используете дополнительное пространство, оно должно быть постоянного пространства.

29 ответов


EDIT: это не соответствует ограничению "постоянное пространство" - оно в основном удваивает требуемое пространство. Я очень сомневаюсь, что есть решение, которое не сделайте это, хотя, не разрушая сложность выполнения где-то (например, делая push/pop O(n)). Обратите внимание, что это не меняет сложности требуемого пространства, например, если у вас есть стек с требованиями к пространству O(n), это все равно будет O (n) только с другой константой факторный.

non-постоянн-пространственное решение

держите" дубликат "стека" минимум всех значений ниже в стеке". Когда вы поп основной стек, поп мин стек тоже. Когда вы нажимаете основной стек, нажмите либо новый элемент, либо текущий min, в зависимости от того, что ниже. getMinimum() затем реализуется как просто minStack.peek().

таким образом, используя Ваш пример, мы имеем:

Real stack        Min stack

5  --> TOP        1
1                 1
4                 2
6                 2
2                 2

после хлопать дважды вы получить:

Real stack        Min stack

4                 2
6                 2
2                 2

пожалуйста, дайте мне знать, если это не достаточно информации. Это просто, когда вы grok его, но это может занять немного почесать голову сначала :)

(недостатком, конечно, является то, что он удваивает потребность в пространстве. Время выполнения не страдает значительно, хотя-то есть это все та же сложность.)

EDIT: есть вариант, который немного более fiddly, но имеет лучшее пространство в целом. У нас все еще есть min stack, но мы только pop из него, когда значение, которое мы выскакиваем из основного стека, равно значению в минимальном стеке. Мы только push в минимальный стек, когда значение, помещаемое в основной стек, меньше или равно к текущему значению min. Это позволяет дублировать минимальные значения. getMinimum() все еще просто операция peek. Например, взяв исходную версию и снова нажав 1, мы получим:

Real stack        Min stack

1  --> TOP        1
5                 1
1                 2
4                 
6                 
2                 

выскакивает из вышеуказанных всплывающих окон из обоих стеков, потому что 1 == 1, уходя:

Real stack        Min stack

5  --> TOP        1
1                 2
4                 
6                 
2                 

снова появляются только выскакивает из основного стека, потому что 5 > 1:

Real stack        Min stack

1                 1
4                 2
6                 
2                 

Popping снова всплывает оба стека, потому что 1 == 1:

Real stack        Min stack

4                 2
6                 
2                 

это заканчивается той же наихудшей сложностью пространства (двойной исходный стек), но гораздо лучшим использованием пространства, если мы редко получаем "новый минимум или равный".

EDIT: вот реализация злой схемы Пита. Я не проверил его полностью, но я думаю это нормально :)

using System.Collections.Generic;

public class FastMinStack<T>
{
    private readonly Stack<T> stack = new Stack<T>();
    // Could pass this in to the constructor
    private readonly IComparer<T> comparer = Comparer<T>.Default;

    private T currentMin;

    public T Minimum
    {
        get { return currentMin; }
    }

    public void Push(T element)
    {
        if (stack.Count == 0 ||
            comparer.Compare(element, currentMin) <= 0)
        {
            stack.Push(currentMin);
            stack.Push(element);
            currentMin = element;
        }
        else
        {
            stack.Push(element);
        }
    }

    public T Pop()
    {
        T ret = stack.Pop();
        if (comparer.Compare(ret, currentMin) == 0)
        {
            currentMin = stack.Pop();
        }
        return ret;
    }
}

добавьте поле для удержания минимального значения и обновите его во время Pop () и Push (). Таким образом, getMinimum() будет O(1), но Pop() и Push() должны будут сделать немного больше работы.

Если минимальное значение выскочило, Pop () будет O(n), иначе они все равно будут O(1). При изменении размера Push () становится O (n) в соответствии с реализацией стека.

вот быстрая реализация

public sealed class MinStack {
    private int MinimumValue;
    private readonly Stack<int> Stack = new Stack<int>();

    public int GetMinimum() {
        if (IsEmpty) {
            throw new InvalidOperationException("Stack is empty");
        }
        return MinimumValue;
    }

    public int Pop() {
        var value = Stack.Pop();
        if (value == MinimumValue) {
            MinimumValue = Stack.Min();
        }
        return value;
    }

    public void Push(int value) {
        if (IsEmpty || value < MinimumValue) {
            MinimumValue = value;
        }
        Stack.Push(value);
    }

    private bool IsEmpty { get { return Stack.Count() == 0; } }
}

public class StackWithMin {
    int min;
    int size;
    int[] data = new int[1024];

    public void push ( int val ) {
        if ( size == 0 ) {
            data[size] = val;
            min = val;
        } else if ( val < min) {
            data[size] = 2 * val - min;
            min = val;

            assert (data[size] < min); 
        } else {
            data[size] = val;
        }

        ++size;

        // check size and grow array
    }

    public int getMin () {
        return min;
    }

    public int pop () {
        --size;

        int val = data[size];

        if ( ( size > 0 ) && ( val < min ) ) {
            int prevMin = min;
            min += min - val;
            return prevMin;
        } else {
            return val;
        }
    }

    public boolean isEmpty () {
        return size == 0;
    }

    public static void main (String...args) {
        StackWithMin stack = new StackWithMin();

        for ( String arg: args ) 
            stack.push( Integer.parseInt( arg ) );

        while ( ! stack.isEmpty() ) {
            int min = stack.getMin();
            int val = stack.pop();

            System.out.println( val + " " + min );
        }

        System.out.println();
    }

}

это сохраняет текущее минимальное явно, и если минимальные изменения, вместо того, чтобы толкаться значение, это толкает стоимость такая же разница, с другой стороны новый минимум ( если мин = 7 и нажимаем 5, он толкает, а не 3 ( 5-|7-5| = 3) и устанавливает мин до 5; Если вы потом поп 3 когда мин 5 он видит, что выскочил значение меньше минимального, поэтому полностью меняет процедуру, чтобы получить 7 новых мин, затем возвращает предыдущее мин). Как и любое значение, которое не вызывает изменения тока минимум больше текущего минимума, у вас есть что-то, что можно использовать для различения значений, которые изменяют минимум, и те, которые этого не делают.

в языках, которые используют целые числа фиксированного размера, вы заимствуете немного пространства из представления значений, поэтому он может быть недостаточным, и assert потерпит неудачу. Но в противном случае это постоянное дополнительное пространство, и все операции по-прежнему O(1).

стеки, которые основаны вместо связанных списков, имеют другие места вы можете позаимствовать бит, например, в C наименее значимый бит следующего указателя или в Java тип объектов в связанном списке. Для Java это означает, что используется больше места по сравнению с непрерывным стеком, так как у вас есть накладные расходы объекта на ссылку:

public class LinkedStackWithMin {
    private static class Link {
        final int value;
        final Link next;

        Link ( int value, Link next ) {
            this.value = value;
            this.next = next;
        }

        int pop ( LinkedStackWithMin stack ) {
            stack.top = next;
            return value;
        }
    }

    private static class MinLink extends Link {
        MinLink ( int value, Link next ) {
            super( value, next );
        }

        int pop ( LinkedStackWithMin stack ) {
            stack.top = next;
            int prevMin = stack.min;
            stack.min = value;
            return prevMin;
        }
    }

    Link top;
    int min;

    public LinkedStackWithMin () {
    }

    public void push ( int val ) {
        if ( ( top == null ) || ( val < min ) ) {
            top = new MinLink(min, top);
            min = val;
        } else {
            top = new Link(val, top);
        }
    }

    public int pop () {
        return top.pop(this);
    }

    public int getMin () {
        return min;
    }

    public boolean isEmpty () {
        return top == null;
    }

В C накладных расходов нет, и вы можете заимствовать lsb следующего указателя:

typedef struct _stack_link stack_with_min;

typedef struct _stack_link stack_link;

struct _stack_link {
    size_t  next;
    int     value;
};

stack_link* get_next ( stack_link* link ) 
{
    return ( stack_link * )( link -> next & ~ ( size_t ) 1 );
}

bool is_min ( stack_link* link )
{
    return ( link -> next & 1 ) ! = 0;
}

void push ( stack_with_min* stack, int value )
{
    stack_link *link = malloc ( sizeof( stack_link ) );

    link -> next = ( size_t ) stack -> next;

    if ( (stack -> next == 0) || ( value == stack -> value ) ) {
        link -> value = stack -> value;
        link -> next |= 1; // mark as min
    } else {
        link -> value = value;
    }

    stack -> next = link;
}

etc.;

однако ни один из них не является истинно O (1). Они не требуют больше места на практике, потому что они используют дыры в представлениях чисел, объектов или указателей на этих языках. Но теоретическая машина, которая использовала бы более компактное представление, потребовала бы добавления дополнительного бита к этому представлению в каждом случае.


Я нашел решение, которое удовлетворяет всем упомянутым ограничениям (операции с постоянным временем) и постоянное дополнительное пространство.

идея состоит в том, чтобы сохранить разницу между минимальным значением и входным номером и обновить минимальное значение, если оно больше не является минимальным.

код выглядит следующим образом:

public class MinStack {
    long min;
    Stack<Long> stack;

    public MinStack(){
        stack = new Stack<>();
    }

    public void push(int x) {
        if (stack.isEmpty()) {
            stack.push(0L);
            min = x;
        } else {
            stack.push(x - min); //Could be negative if min value needs to change
            if (x < min) min = x;
        }
    }

    public int pop() {
        if (stack.isEmpty()) return;

        long pop = stack.pop();

        if (pop < 0) {
            long ret = min
            min = min - pop; //If negative, increase the min value
            return (int)ret;
        }
        return (int)(pop + min);

    }

    public int top() {
        long top = stack.peek();
        if (top < 0) {
            return (int)min;
        } else {
           return (int)(top + min);
        }
    }

    public int getMin() {
        return (int)min;
    }
}

заслуга: https://leetcode.com/discuss/15679/share-my-java-solution-with-only-one-stack


Ну, каковы ограничения времени выполнения push и pop? Если они не должны быть постоянными, то просто вычислите минимальное значение в этих двух операциях (сделав их O(n)). В противном случае я не вижу, как это можно сделать с постоянным дополнительным пространством.


вот мой код, который работает с O(1). Предыдущий код, который я разместил, имел проблему, когда минимальный элемент был выскочил. Я изменил свой код. Этот использует другой стек, который поддерживает минимальный элемент, присутствующий в стеке выше текущего выталкиваемого элемента.

 class StackDemo
{
    int[] stk = new int[100];
    int top;
    public StackDemo()
    {
        top = -1;
    }
    public void Push(int value)
    {
        if (top == 100)
            Console.WriteLine("Stack Overflow");
        else
            stk[++top] = value;
    }
    public bool IsEmpty()
    {
        if (top == -1)
            return true;
        else
            return false;
    }
    public int Pop()
    {
        if (IsEmpty())
        {
            Console.WriteLine("Stack Underflow");
            return 0;
        }
        else
            return stk[top--];
    }
    public void Display()
    {
        for (int i = top; i >= 0; i--)
            Console.WriteLine(stk[i]);
    }
}
class MinStack : StackDemo
{
    int top;
    int[] stack = new int[100];
    StackDemo s1; int min;
    public MinStack()
    {
        top = -1;
        s1 = new StackDemo();
    }
    public void PushElement(int value)
    {
        s1.Push(value);
        if (top == 100)
            Console.WriteLine("Stack Overflow");
        if (top == -1)
        {
            stack[++top] = value;
            stack[++top] = value;   
        }
        else
        {
            //  stack[++top]=value;
            int ele = PopElement();
            stack[++top] = ele;
            int a = MininmumElement(min, value);
              stack[++top] = min;

                stack[++top] = value;
                stack[++top] = a;


        }
    }
    public int PopElement()
    {

        if (top == -1)
            return 1000;
        else
        {
            min = stack[top--];
            return stack[top--];
        }

    }
    public int PopfromStack()
    {
        if (top == -1)
            return 1000;
        else
        {
            s1.Pop();
            return PopElement();
        }
    }
    public int MininmumElement(int a,int b)
    {
        if (a > b)
            return b;
        else
            return a;
    }
    public int StackTop()
    {
        return stack[top];
    }
    public void DisplayMinStack()
    {
        for (int i = top; i >= 0; i--)
            Console.WriteLine(stack[i]);
    }
}
class Program
{
    static void Main(string[] args)
    {
        MinStack ms = new MinStack();
        ms.PushElement(15);
        ms.PushElement(2);
        ms.PushElement(1);
        ms.PushElement(13);
        ms.PushElement(5);
        ms.PushElement(21);
        Console.WriteLine("Min Stack");
        ms.DisplayMinStack();
        Console.WriteLine("Minimum Element:"+ms.StackTop());
        ms.PopfromStack();
        ms.PopfromStack();
        ms.PopfromStack();
        ms.PopfromStack();

        Console.WriteLine("Min Stack");
        ms.DisplayMinStack();
        Console.WriteLine("Minimum Element:" + ms.StackTop());
        Thread.Sleep(1000000);
    }
}

я использовал другой вид стека. Вот реализация.

//
//  main.cpp
//  Eighth
//
//  Created by chaitanya on 4/11/13.
//  Copyright (c) 2013 cbilgika. All rights reserved.
//

#include <iostream>
#include <limits>
using namespace std;
struct stack
{
    int num;
    int minnum;
}a[100];

void push(int n,int m,int &top)
{

    top++;
    if (top>=100) {
        cout<<"Stack Full";
        cout<<endl;
    }
    else{
        a[top].num = n;
        a[top].minnum = m;
    }


}

void pop(int &top)
{
    if (top<0) {
        cout<<"Stack Empty";
        cout<<endl;
    }
    else{
       top--; 
    }


}
void print(int &top)
{
    cout<<"Stack: "<<endl;
    for (int j = 0; j<=top ; j++) {
        cout<<"("<<a[j].num<<","<<a[j].minnum<<")"<<endl;
    }
}


void get_min(int &top)
{
    if (top < 0)
    {
        cout<<"Empty Stack";
    }
    else{
        cout<<"Minimum element is: "<<a[top].minnum;
    }
    cout<<endl;
}

int main()
{

    int top = -1,min = numeric_limits<int>::min(),num;
    cout<<"Enter the list to push (-1 to stop): ";
    cin>>num;
    while (num!=-1) {
        if (top == -1) {
            min = num;
            push(num, min, top);
        }
        else{
            if (num < min) {
                min = num;
            }
            push(num, min, top);
        }
        cin>>num;
    }
    print(top);
    get_min(top);
    return 0;
}

выход:

Enter the list to push (-1 to stop): 5
1
4
6
2
-1
Stack: 
(5,5)
(1,1)
(4,1)
(6,1)
(2,1)
Minimum element is: 1

попробовать его. Думаю, это ответ на вопрос. Второй элемент каждой пары дает минимальное значение, видимое при вставке этого элемента.


я выложу полный код здесь, чтобы найти min и Max в данном стеке.

сложность будет O(1)..

package com.java.util.collection.advance.datastructure;

/**
 * 
 * @author vsinha
 *
 */
public abstract interface Stack<E> {

    /**
     * Placing a data item on the top of the stack is called pushing it
     * @param element
     * 
     */
    public abstract void push(E element);


    /**
     * Removing it from the top of the stack is called popping it
     * @return the top element
     */
    public abstract E pop();

    /**
     * Get it top element from the stack and it 
     * but the item is not removed from the stack, which remains unchanged
     * @return the top element
     */
    public abstract E peek();

    /**
     * Get the current size of the stack.
     * @return
     */
    public abstract int size();


    /**
     * Check whether stack is empty of not.
     * @return true if stack is empty, false if stack is not empty
     */
    public abstract boolean empty();



}



package com.java.util.collection.advance.datastructure;

@SuppressWarnings("hiding")
public abstract interface MinMaxStack<Integer> extends Stack<Integer> {

    public abstract int min();

    public abstract int max();

}


package com.java.util.collection.advance.datastructure;

import java.util.Arrays;

/**
 * 
 * @author vsinha
 *
 * @param <E>
 */
public class MyStack<E> implements Stack<E> {

    private E[] elements =null;
    private int size = 0;
    private int top = -1;
    private final static int DEFAULT_INTIAL_CAPACITY = 10;


    public MyStack(){
        // If you don't specify the size of stack. By default, Stack size will be 10
        this(DEFAULT_INTIAL_CAPACITY);
    }

    @SuppressWarnings("unchecked")
    public MyStack(int intialCapacity){
        if(intialCapacity <=0){
            throw new IllegalArgumentException("initial capacity can't be negative or zero");
        }
        // Can't create generic type array
        elements =(E[]) new Object[intialCapacity];
    }

    @Override
    public void push(E element) {
        ensureCapacity();
        elements[++top] = element;
        ++size;
    }

    @Override
    public E pop() {
        E element = null;
        if(!empty()) {
            element=elements[top];
            // Nullify the reference
            elements[top] =null;
            --top;
            --size;
        }
        return element;
    }

    @Override
    public E peek() {
        E element = null;
        if(!empty()) {
            element=elements[top];
        }
        return element;
    }

    @Override
    public int size() {
        return size;
    }

    @Override
    public boolean empty() {
        return size == 0;
    }

    /**
     * Increases the capacity of this <tt>Stack by double of its current length</tt> instance, 
     * if stack is full 
     */
    private void ensureCapacity() {
        if(size != elements.length) {
            // Don't do anything. Stack has space.
        } else{
            elements = Arrays.copyOf(elements, size *2);
        }
    }

    @Override
    public String toString() {
        return "MyStack [elements=" + Arrays.toString(elements) + ", size="
                + size + ", top=" + top + "]";
    }


}


package com.java.util.collection.advance.datastructure;

/**
 * Time complexity will be O(1) to find min and max in a given stack.
 * @author vsinha
 *
 */
public class MinMaxStackFinder extends MyStack<Integer> implements MinMaxStack<Integer> {

    private MyStack<Integer> minStack;

    private MyStack<Integer> maxStack;

    public MinMaxStackFinder (int intialCapacity){
        super(intialCapacity);
        minStack =new MyStack<Integer>();
        maxStack =new MyStack<Integer>();

    }
    public void push(Integer element) {
        // Current element is lesser or equal than min() value, Push the current element in min stack also.
        if(!minStack.empty()) {
            if(min() >= element) {
                minStack.push(element);
            }
        } else{
            minStack.push(element);
        }
        // Current element is greater or equal than max() value, Push the current element in max stack also.
        if(!maxStack.empty()) {
            if(max() <= element) {
                maxStack.push(element);
            }
        } else{
            maxStack.push(element);
        }
        super.push(element);
    }


    public Integer pop(){
        Integer curr = super.pop();
        if(curr !=null) {
            if(min() == curr) {
                minStack.pop();
            } 

            if(max() == curr){
                maxStack.pop();
            }
        }
        return curr;
    }


    @Override
    public int min() {
        return minStack.peek();
    }

    @Override
    public int max() {
        return maxStack.peek();
    }


    @Override
    public String toString() {
        return super.toString()+"\nMinMaxStackFinder [minStack=" + minStack + "\n maxStack="
                + maxStack + "]" ;
    }




}

// You can use the below program to execute it.

package com.java.util.collection.advance.datastructure;

import java.util.Random;

public class MinMaxStackFinderApp {

    public static void main(String[] args) {
        MinMaxStack<Integer> stack =new MinMaxStackFinder(10);
        Random random =new Random();
        for(int i =0; i< 10; i++){
            stack.push(random.nextInt(100));
        }
        System.out.println(stack);
        System.out.println("MAX :"+stack.max());
        System.out.println("MIN :"+stack.min());

        stack.pop();
        stack.pop();
        stack.pop();
        stack.pop();
        stack.pop();

        System.out.println(stack);
        System.out.println("MAX :"+stack.max());
        System.out.println("MIN :"+stack.min());
    }
}

Дайте мне знать, если вы столкнулись с любой проблемой

спасибо, Vikash


вы можете расширить исходный класс стека и просто добавить к нему минимальное отслеживание. Пусть исходный родительский класс обрабатывает все остальное, как обычно.

public class StackWithMin extends Stack<Integer> {  

    private Stack<Integer> min;

    public StackWithMin() {
        min = new Stack<>();
    }

    public void push(int num) {
        if (super.isEmpty()) {
            min.push(num);
        } else if (num <= min.peek()) {
            min.push(num);
        }
        super.push(num);
    }

    public int min() {
        return min.peek();
    }

    public Integer pop() {
        if (super.peek() == min.peek()) {
            min.pop();
        }
        return super.pop();
    }   
}

вот мое решение на java, используя список понравившихся.

class Stack{
    int min;
    Node top;
    static class Node{
        private int data;
        private Node next;
        private int min;

        Node(int data, int min){
           this.data = data;
           this.min = min;
           this.next = null; 
    }
}

  void push(int data){
        Node temp;
        if(top == null){
            temp = new Node(data,data);
            top = temp;
            top.min = data;
        }
        if(top.min > data){
            temp = new Node(data,data);
            temp.next = top;
            top = temp;
        } else {
            temp = new Node(data, top.min);
            temp.next = top;
            top = temp;
        }
  }

  void pop(){
    if(top != null){
        top = top.next;
    }
  }

  int min(){
    return top.min;
  }

}


вот моя версия реализации.

 struct MyStack {
    int element;
    int *CurrentMiniAddress;
 };

 void Push(int value)
 {
    // Create you structure and populate the value
    MyStack S = new MyStack();
    S->element = value;

    if(Stack.Empty())
    {    
        // Since the stack is empty, point CurrentMiniAddress to itself
        S->CurrentMiniAddress = S;

    }
    else
    {
         // Stack is not empty

         // Retrieve the top element. No Pop()
         MyStack *TopElement = Stack.Top();

         // Remember Always the TOP element points to the
         // minimum element in ths whole stack
         if (S->element CurrentMiniAddress->element)
         {
            // If the current value is the minimum in the whole stack
            // then S points to itself
            S->CurrentMiniAddress = S;
         }
             else
             {
                 // So this is not the minimum in the whole stack
                 // No worries, TOP is holding the minimum element
                 S->CurrentMiniAddress = TopElement->CurrentMiniAddress;
             }

    }
        Stack.Add(S);
 }

 void Pop()
 {
     if(!Stack.Empty())
     {
        Stack.Pop();
     }  
 }

 int GetMinimum(Stack &stack)
 {
       if(!stack.Empty())
       {
            MyStack *Top  = stack.top();
            // Top always points to the minimumx
            return  Top->CurrentMiniAddress->element;
        }
 }

#include<stdio.h>
struct stack
{
    int data;
    int mindata;
}a[100];

void push(int *tos,int input)
{
    if (*tos > 100)
    {
        printf("overflow");
        return;
    }
    (*tos)++;
    a[(*tos)].data=input;
    if (0 == *tos)
        a[*tos].mindata=input;
    else if (a[*tos -1].mindata < input)
        a[*tos].mindata=a[*tos -1].mindata;
    else
        a[*tos].mindata=input;
}

int pop(int * tos)
{
    if (*tos <= -1)
    {
        printf("underflow");
        return -1;
    }
    return(a[(*tos)--].data);
}
void display(int tos)
{
    while (tos > -1)
    {
        printf("%d:%d\t",a[tos].data,a[tos].mindata);
        tos--;
    }    
}

int min(int tos)
{
   return(a[tos].mindata);
}
int main()
{
int tos=-1,x,choice;
while(1)
{
    printf("press 1-push,2-pop,3-mindata,4-display,5-exit ");
    scanf("%d",&choice);
    switch(choice)
    {
    case 1: printf("enter data to push");
            scanf("%d",&x);
            push(&tos,x);
            break;
    case 2: printf("the poped out data=%d ",pop(&tos));
            break;
    case 3: printf("The min peeped data:%d",min(tos));
            break;
    case 4: printf("The elements of stack \n");
            display(tos);
            break;
    default: exit(0);
}
}

Я нашел это решение здесь

struct StackGetMin {
  void push(int x) {
    elements.push(x);
    if (minStack.empty() || x <= minStack.top())
      minStack.push(x);
  }
  bool pop() {
    if (elements.empty()) return false;
    if (elements.top() == minStack.top())
      minStack.pop();
    elements.pop();
    return true;
  }
  bool getMin(int &min) {
    if (minStack.empty()) {
      return false;
    } else {
      min = minStack.top();
      return true;
    }
  }
  stack<int> elements;
  stack<int> minStack;
};

struct Node {
    let data: Int
    init(_ d:Int){
        data = d
    }
}

struct Stack {
    private var backingStore = [Node]()
    private var minArray = [Int]()

    mutating func push(n:Node) {
        backingStore.append(n)
        minArray.append(n.data)
        minArray.sort(>)
        minArray
    }

    mutating func pop() -> Node? {
        if(backingStore.isEmpty){
            return nil
        }

        let n = backingStore.removeLast()

        var found = false
        minArray = minArray.filter{
            if (!found &&  == n.data) {
                found = true
                return false
            }
            return true
        }
        return n
    }

    func min() -> Int? {
        return minArray.last
    }
}

 class MyStackImplementation{
private final int capacity = 4;
int min;
int arr[] = new int[capacity];
int top = -1;

public void push ( int val ) {
top++;
if(top <= capacity-1){
    if(top == 0){
min = val;
arr[top] = val;
}
else if(val < min){
arr[top] = arr[top]+min;
min = arr[top]-min;
arr[top] = arr[top]-min;
}
else {
arr[top] = val;
}
System.out.println("element is pushed");
}
else System.out.println("stack is full");

}

 public void pop () {
top--;
   if(top > -1){ 

   min = arr[top];
}
else {min=0; System.out.println("stack is under flow");}

}
public int min(){
return min;
}

 public boolean isEmpty () {
    return top == 0;
}

public static void main(String...s){
MyStackImplementation msi = new MyStackImplementation();
msi.push(1);
msi.push(4);
msi.push(2);
msi.push(10);
System.out.println(msi.min);
msi.pop();
msi.pop();
msi.pop();
msi.pop();
msi.pop();
System.out.println(msi.min);

}
}

class FastStack {

    private static class StackNode {
        private Integer data;
        private StackNode nextMin;

        public StackNode(Integer data) {
            this.data = data;
        }

        public Integer getData() {
            return data;
        }

        public void setData(Integer data) {
            this.data = data;
        }

        public StackNode getNextMin() {
            return nextMin;
        }

        public void setNextMin(StackNode nextMin) {
            this.nextMin = nextMin;
        }

    }

    private LinkedList<StackNode> stack = new LinkedList<>();

    private StackNode currentMin = null;

    public void push(Integer item) {
        StackNode node = new StackNode(item);
        if (currentMin == null) {
            currentMin = node;
            node.setNextMin(null);
        } else if (item < currentMin.getData()) {
            StackNode oldMinNode = currentMin;
            node.setNextMin(oldMinNode);
            currentMin = node;
        }

        stack.addFirst(node);
    }

    public Integer pop() {
        if (stack.isEmpty()) {
            throw new EmptyStackException();
        }
        StackNode node = stack.peek();
        if (currentMin == node) {
            currentMin = node.getNextMin();
        }
        stack.removeFirst();
        return node.getData();
    }

    public Integer getMinimum() {
        if (stack.isEmpty()) {
            throw new NoSuchElementException("Stack is empty");
        }
        return currentMin.getData();
    }
}

вот мой код, который работает с O(1). Здесь я использовал векторную пару, которая содержит значение, которое толкнуло, а также содержит минимальное значение до этого толкнутого значения.


вот моя версия реализации C++.

vector<pair<int,int> >A;
int sz=0; // to keep track of the size of vector

class MinStack
{
public:
    MinStack()
    {
        A.clear();
        sz=0;
    }

    void push(int x)
    {
        int mn=(sz==0)?x: min(A[sz-1].second,x); //find the minimum value upto this pushed value
        A.push_back(make_pair(x,mn));
        sz++; // increment the size
    }

    void pop()
    {
        if(sz==0) return;
        A.pop_back(); // pop the last inserted element
        sz--;  // decrement size
    }

    int top()
    {
        if(sz==0)   return -1;  // if stack empty return -1
        return A[sz-1].first;  // return the top element
    }

    int getMin()
    {
        if(sz==0) return -1;
        return A[sz-1].second; // return the minimum value at sz-1 
    }
};

    **The task can be acheived by creating two stacks:**



import java.util.Stack;
    /*
     * 
     * Find min in stack using O(n) Space Complexity
     */
    public class DeleteMinFromStack {

        void createStack(Stack<Integer> primary, Stack<Integer> minStack, int[] arr) {
    /* Create main Stack and in parallel create the stack which contains the minimum seen so far while creating main Stack */
            primary.push(arr[0]);
            minStack.push(arr[0]);

            for (int i = 1; i < arr.length; i++) {
                primary.push(arr[i]);
                if (arr[i] <= minStack.peek())// Condition to check to push the value in minimum stack only when this urrent value is less than value seen at top of this stack */
                    minStack.push(arr[i]);
            }

        }

        int findMin(Stack<Integer> secStack) {
            return secStack.peek();
        }

        public static void main(String args[]) {

            Stack<Integer> primaryStack = new Stack<Integer>();
            Stack<Integer> minStack = new Stack<Integer>();

            DeleteMinFromStack deleteMinFromStack = new DeleteMinFromStack();

            int[] arr = { 5, 5, 6, 8, 13, 1, 11, 6, 12 };
            deleteMinFromStack.createStack(primaryStack, minStack, arr);
            int mimElement = deleteMinFromStack.findMin(primaryStack, minStack);
    /** This check for algorithm when the main Stack Shrinks by size say i as in loop below */
            for (int i = 0; i < 2; i++) {
                primaryStack.pop();
            }

            System.out.println(" Minimum element is " + mimElement);
        }

    }
/*
here in have tried to add for loop wherin the main tack can be shrinked/expaned so we can check the algorithm */

практическая реализация для нахождения минимума в стеке пользовательского объекта, имя: школа

стек будет хранить школы в стеке на основе ранга, присвоенного школе в конкретном регионе, скажем, findMin () дает школе, где мы получаем максимальное количество заявок на прием, что, в свою очередь, должно быть определено компаратором, который использует ранг, связанный со школами в предыдущем сезоне .

The Code for same is below:


   package com.practical;

import java.util.Collections;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Stack;

public class CognitaStack {

    public School findMin(Stack<School> stack, Stack<School> minStack) {

        if (!stack.empty() && !minStack.isEmpty())
            return (School) minStack.peek();
        return null;
    }

    public School removeSchool(Stack<School> stack, Stack<School> minStack) {

        if (stack.isEmpty())
            return null;
        School temp = stack.peek();
        if (temp != null) {
            // if(temp.compare(stack.peek(), minStack.peek())<0){
            stack.pop();
            minStack.pop();
            // }

            // stack.pop();
        }
        return stack.peek();
    }

    public static void main(String args[]) {

        Stack<School> stack = new Stack<School>();
        Stack<School> minStack = new Stack<School>();

        List<School> lst = new LinkedList<School>();

        School s1 = new School("Polam School", "London", 3);
        School s2 = new School("AKELEY WOOD SENIOR SCHOOL", "BUCKINGHAM", 4);
        School s3 = new School("QUINTON HOUSE SCHOOL", "NORTHAMPTON", 2);
        School s4 = new School("OAKLEIGH HOUSE SCHOOL", " SWANSEA", 5);
        School s5 = new School("OAKLEIGH-OAK HIGH SCHOOL", "Devon", 1);
        School s6 = new School("BritishInter2", "Devon", 7);

        lst.add(s1);
        lst.add(s2);
        lst.add(s3);
        lst.add(s4);
        lst.add(s5);
        lst.add(s6);

        Iterator<School> itr = lst.iterator();
        while (itr.hasNext()) {
            School temp = itr.next();
            if ((minStack.isEmpty()) || (temp.compare(temp, minStack.peek()) < 0)) { // minStack.peek().equals(temp)
                stack.push(temp);
                minStack.push(temp);
            } else {
                minStack.push(minStack.peek());
                stack.push(temp);
            }

        }

        CognitaStack cogStack = new CognitaStack();
        System.out.println(" Minimum in Stack is " + cogStack.findMin(stack, minStack).name);
        cogStack.removeSchool(stack, minStack);
        cogStack.removeSchool(stack, minStack);

        System.out.println(" Minimum in Stack is "
                + ((cogStack.findMin(stack, minStack) != null) ? cogStack.findMin(stack, minStack).name : "Empty"));
    }

}

также объект школы как следует:

package com.practical;

import java.util.Comparator;

public class School implements Comparator<School> {

    String name;
    String location;
    int rank;

    public School(String name, String location, int rank) {
        super();
        this.name = name;
        this.location = location;
        this.rank = rank;
    }

    @Override
    public int hashCode() {
        final int prime = 31;
        int result = 1;
        result = prime * result + ((location == null) ? 0 : location.hashCode());
        result = prime * result + ((name == null) ? 0 : name.hashCode());
        result = prime * result + rank;
        return result;
    }

    @Override
    public boolean equals(Object obj) {
        if (this == obj)
            return true;
        if (obj == null)
            return false;
        if (getClass() != obj.getClass())
            return false;
        School other = (School) obj;
        if (location == null) {
            if (other.location != null)
                return false;
        } else if (!location.equals(other.location))
            return false;
        if (name == null) {
            if (other.name != null)
                return false;
        } else if (!name.equals(other.name))
            return false;
        if (rank != other.rank)
            return false;
        return true;
    }

    public String getName() {
        return name;
    }

    public void setName(String name) {
        this.name = name;
    }

    public String getLocation() {
        return location;
    }

    public void setLocation(String location) {
        this.location = location;
    }

    public int getRank() {
        return rank;
    }

    public void setRank(int rank) {
        this.rank = rank;
    }

    public int compare(School o1, School o2) {
        // TODO Auto-generated method stub
        return o1.rank - o2.rank;
    }

}

class SchoolComparator implements Comparator<School> {

    public int compare(School o1, School o2) {
        return o1.rank - o2.rank;
    }

}

этот пример охватывает следующие: 1. Реализация стека для пользовательских объектов, здесь, школа 2. Реализация метода hashcode() и equals() с использованием всех полей сравниваемых объектов 3. Практическая реализация для сценария, где мы rqeuire, чтобы получить стек, содержит операцию в порядке O (1)


вот реализация PHP того, что объяснено в ответ Джона Скита как немного лучшая реализация сложности пространства, чтобы получить максимум стека в O (1).

<?php

/**
 * An ordinary stack implementation.
 *
 * In real life we could just extend the built-in "SplStack" class.
 */
class BaseIntegerStack
{
    /**
     * Stack main storage.
     *
     * @var array
     */
    private $storage = [];

    // ------------------------------------------------------------------------
    // Public API
    // ------------------------------------------------------------------------

    /**
     * Pushes to stack.
     *
     * @param  int $value New item.
     *
     * @return bool
     */
    public function push($value)
    {
        return is_integer($value)
            ? (bool) array_push($this->storage, $value)
            : false;
    }

    /**
     * Pops an element off the stack.
     *
     * @return int
     */
    public function pop()
    {
        return array_pop($this->storage);
    }

    /**
     * See what's on top of the stack.
     *
     * @return int|bool
     */
    public function top()
    {
        return empty($this->storage)
            ? false
            : end($this->storage);
    }

    // ------------------------------------------------------------------------
    // Magic methods
    // ------------------------------------------------------------------------

    /**
     * String representation of the stack.
     *
     * @return string
     */
    public function __toString()
    {
        return implode('|', $this->storage);
    }
} // End of BaseIntegerStack class

/**
 * The stack implementation with getMax() method in O(1).
 */
class Stack extends BaseIntegerStack
{
    /**
     * Internal stack to keep track of main stack max values.
     *
     * @var BaseIntegerStack
     */
    private $maxStack;

    /**
     * Stack class constructor.
     *
     * Dependencies are injected.
     *
     * @param BaseIntegerStack $stack Internal stack.
     *
     * @return void
     */
    public function __construct(BaseIntegerStack $stack)
    {
        $this->maxStack = $stack;
    }

    // ------------------------------------------------------------------------
    // Public API
    // ------------------------------------------------------------------------

    /**
     * Prepends an item into the stack maintaining max values.
     *
     * @param  int $value New item to push to the stack.
     *
     * @return bool
     */
    public function push($value)
    {
        if ($this->isNewMax($value)) {
            $this->maxStack->push($value);
        }

        parent::push($value);
    }

    /**
     * Pops an element off the stack maintaining max values.
     *
     * @return int
     */
    public function pop()
    {
        $popped = parent::pop();

        if ($popped == $this->maxStack->top()) {
            $this->maxStack->pop();
        }

        return $popped;
    }

    /**
     * Finds the maximum of stack in O(1).
     *
     * @return int
     * @see push()
     */
    public function getMax()
    {
        return $this->maxStack->top();
    }

    // ------------------------------------------------------------------------
    // Internal helpers
    // ------------------------------------------------------------------------

    /**
     * Checks that passing value is a new stack max or not.
     *
     * @param  int $new New integer to check.
     *
     * @return boolean
     */
    private function isNewMax($new)
    {
        return empty($this->maxStack) OR $new > $this->maxStack->top();
    }

} // End of Stack class

// ------------------------------------------------------------------------
// Stack Consumption and Test
// ------------------------------------------------------------------------
$stack = new Stack(
    new BaseIntegerStack
);

$stack->push(9);
$stack->push(4);
$stack->push(237);
$stack->push(5);
$stack->push(556);
$stack->push(15);

print "Stack: $stack\n";
print "Max: {$stack->getMax()}\n\n";

print "Pop: {$stack->pop()}\n";
print "Pop: {$stack->pop()}\n\n";

print "Stack: $stack\n";
print "Max: {$stack->getMax()}\n\n";

print "Pop: {$stack->pop()}\n";
print "Pop: {$stack->pop()}\n\n";

print "Stack: $stack\n";
print "Max: {$stack->getMax()}\n";

// Here's the sample output:
//
// Stack: 9|4|237|5|556|15
// Max: 556
//
// Pop: 15
// Pop: 556
//
// Stack: 9|4|237|5
// Max: 237
//
// Pop: 5
// Pop: 237
//
// Stack: 9|4
// Max: 9

вот реализация C++ Jon Skeets ответ. Возможно, это не самый оптимальный способ его реализации, но он делает именно то, что должен.

class Stack {
private:
    struct stack_node {
        int val;
        stack_node *next;
    };
    stack_node *top;
    stack_node *min_top;
public:
    Stack() {
        top = nullptr;
        min_top = nullptr;
    }    
    void push(int num) {
        stack_node *new_node = nullptr;
        new_node = new stack_node;
        new_node->val = num;

        if (is_empty()) {
            top = new_node;
            new_node->next = nullptr;

            min_top = new_node;
            new_node->next = nullptr;
        } else {
            new_node->next = top;
            top = new_node;

            if (new_node->val <= min_top->val) {
                new_node->next = min_top;
                min_top = new_node;
            }
        }
    }

    void pop(int &num) {
        stack_node *tmp_node = nullptr;
        stack_node *min_tmp = nullptr;

        if (is_empty()) {
            std::cout << "It's empty\n";
        } else {
            num = top->val;
            if (top->val == min_top->val) {
                min_tmp = min_top->next;
                delete min_top;
                min_top = min_tmp;
            }
            tmp_node = top->next;
            delete top;
            top = tmp_node;
        }
    }

    bool is_empty() const {
        return !top;
    }

    void get_min(int &item) {
        item = min_top->val;
    }
};

а вот и водитель для класса

int main() {
    int pop, min_el;
    Stack my_stack;

    my_stack.push(4);
    my_stack.push(6);
    my_stack.push(88);
    my_stack.push(1);
    my_stack.push(234);
    my_stack.push(2);

    my_stack.get_min(min_el);
    cout << "Min: " << min_el << endl;

    my_stack.pop(pop);
    cout << "Popped stock element: " << pop << endl;

    my_stack.pop(pop);
    cout << "Popped stock element: " << pop << endl;

    my_stack.pop(pop);
    cout << "Popped stock element: " << pop << endl;

    my_stack.get_min(min_el);
    cout << "Min: " << min_el << endl;

    return 0;
}

выход:

Min: 1
Popped stock element: 2
Popped stock element: 234
Popped stock element: 1
Min: 4

мы can сделайте это в o(n) времени и O (1) сложности пространства, например:

class MinStackOptimized:
  def __init__(self):
      self.stack = []
      self.min = None

  def push(self, x): 
      if not self.stack:
          # stack is empty therefore directly add
          self.stack.append(x)
          self.min = x 
      else:
          """
          Directly add (x-self.min) to the stack. This also ensures anytime we have a 
          negative number on the stack is when x was less than existing minimum
          recorded thus far.
          """
          self.stack.append(x-self.min)
          if x < self.min:
              # Update x to new min
              self.min = x 

  def pop(self):
      x = self.stack.pop()
      if x < 0:
          """ 
          if popped element was negative therefore this was the minimum
          element, whose actual value is in self.min but stored value is what
          contributes to get the next min. (this is one of the trick we use to ensure
          we are able to get old minimum once current minimum gets popped proof is given
          below in pop method), value stored during push was:
          (x - self.old_min) and self.min = x therefore we need to backtrack
          these steps self.min(current) - stack_value(x) actually implies to
              x (self.min) - (x - self.old_min)
          which therefore gives old_min back and therefore can now be set
          back as current self.min.
          """
          self.min = self.min - x 

  def top(self):
      x = self.stack[-1]
      if x < 0:
          """ 
          As discussed above anytime there is a negative value on stack, this
          is the min value so far and therefore actual value is in self.min,
          current stack value is just for getting the next min at the time
          this gets popped.
          """
          return self.min
      else:
          """ 
          if top element of the stack was positive then it's simple, it was
          not the minimum at the time of pushing it and therefore what we did
          was x(actual) - self.min(min element at current stage) let's say `y`
          therefore we just need to reverse the process to get the actual
          value. Therefore self.min + y, which would translate to
              self.min + x(actual) - self.min, thereby giving x(actual) back
          as desired.
          """
          return x + self.min

  def getMin(self):
      # Always self.min variable holds the minimum so for so easy peezy.
      return self.min

Я думаю, вы можете просто использовать LinkedList в своей реализации стека.

при первом нажатии значения вы помещаете это значение в качестве головки linkedlist.

затем каждый раз, когда вы нажимаете значение, если новое значение

если нет, то выполните операцию добавления.

когда вы делаете pop (), вы проверяете, если min == linkedlist.голова.данные, если да, то голова=Голова.далее;

вот мой код.

public class Stack {

int[] elements;
int top;
Linkedlists min;

public Stack(int n) {
    elements = new int[n];
    top = 0;
    min = new Linkedlists();
}

public void realloc(int n) {
    int[] tab = new int[n];
    for (int i = 0; i < top; i++) {
        tab[i] = elements[i];
    }

    elements = tab;
}

public void push(int x) {
    if (top == elements.length) {
        realloc(elements.length * 2);
    }
    if (top == 0) {
        min.pre(x);
    } else if (x < min.head.data) {
        min.pre(x);
    } else {
        min.app(x);
    }
    elements[top++] = x;
}

public int pop() {

    int x = elements[--top];
    if (top == 0) {

    }
    if (this.getMin() == x) {
        min.head = min.head.next;
    }
    elements[top] = 0;
    if (4 * top < elements.length) {
        realloc((elements.length + 1) / 2);
    }

    return x;
}

public void display() {
    for (Object x : elements) {
        System.out.print(x + " ");
    }

}

public int getMin() {
    if (top == 0) {
        return 0;
    }
    return this.min.head.data;
}

public static void main(String[] args) {
    Stack stack = new Stack(4);
    stack.push(2);
    stack.push(3);
    stack.push(1);
    stack.push(4);
    stack.push(5);
    stack.pop();
    stack.pop();
    stack.pop();
    stack.push(1);
    stack.pop();
    stack.pop();
    stack.pop();
    stack.push(2);
    System.out.println(stack.getMin());
    stack.display();

}

 }

public class MinStack<E>{

    private final LinkedList<E> mainStack = new LinkedList<E>();
    private final LinkedList<E> minStack = new LinkedList<E>();
    private final Comparator<E> comparator;

    public MinStack(Comparator<E> comparator) 
    {
        this.comparator = comparator;
    }

    /**
     * Pushes an element onto the stack.
     *
     *
     * @param e the element to push
     */
    public void push(E e) {
        mainStack.push(e);
        if(minStack.isEmpty())
        {
            minStack.push(e);
        }
        else if(comparator.compare(e, minStack.peek())<=0)
        {
            minStack.push(e);
        }
        else
        {
            minStack.push(minStack.peek());
        }
    }

    /**
     * Pops an element from the stack.
     *
     *
     * @throws NoSuchElementException if this stack is empty
     */
    public E pop() {
       minStack.pop();
       return  mainStack.pop();
    }

    /**
     * Returns but not remove smallest element from the stack. Return null if stack is empty.
     *
     */
    public E getMinimum()
    {
        return minStack.peek();
    }

    @Override
    public String toString() {
        StringBuilder sb = new StringBuilder();
        sb.append("Main stack{");
        for (E e : mainStack) {         
            sb.append(e.toString()).append(",");
        }
        sb.append("}");

        sb.append(" Min stack{");
        for (E e : minStack) {          
            sb.append(e.toString()).append(",");
        }
        sb.append("}");

        sb.append(" Minimum = ").append(getMinimum());
        return sb.toString();
    }

    public static void main(String[] args) {
        MinStack<Integer> st = new MinStack<Integer>(Comparators.INTEGERS);

        st.push(2);
        Assert.assertTrue("2 is min in stack {2}", st.getMinimum().equals(2));
        System.out.println(st);

        st.push(6);
        Assert.assertTrue("2 is min in stack {2,6}", st.getMinimum().equals(2));
        System.out.println(st);

        st.push(4);
        Assert.assertTrue("2 is min in stack {2,6,4}", st.getMinimum().equals(2));
        System.out.println(st);

        st.push(1);
        Assert.assertTrue("1 is min in stack {2,6,4,1}", st.getMinimum().equals(1));
        System.out.println(st);

        st.push(5);
        Assert.assertTrue("1 is min in stack {2,6,4,1,5}", st.getMinimum().equals(1));
        System.out.println(st);

        st.pop();
        Assert.assertTrue("1 is min in stack {2,6,4,1}", st.getMinimum().equals(1));
        System.out.println(st);

        st.pop();
        Assert.assertTrue("2 is min in stack {2,6,4}", st.getMinimum().equals(2));
        System.out.println(st);

        st.pop();
        Assert.assertTrue("2 is min in stack {2,6}", st.getMinimum().equals(2));
        System.out.println(st);

        st.pop();
        Assert.assertTrue("2 is min in stack {2}", st.getMinimum().equals(2));
        System.out.println(st);

        st.pop();
        Assert.assertTrue("null is min in stack {}", st.getMinimum()==null);
        System.out.println(st);
    }
}

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;

namespace Solution 
{
    public class MinStack
    {
        public MinStack()
        {
            MainStack=new Stack<int>();
            Min=new Stack<int>();
        }

        static Stack<int> MainStack;
        static Stack<int> Min;

        public void Push(int item)
        {
            MainStack.Push(item);

            if(Min.Count==0 || item<Min.Peek())
                Min.Push(item);
        }

        public void Pop()
        {
            if(Min.Peek()==MainStack.Peek())
                Min.Pop();
            MainStack.Pop();
        }
        public int Peek()
        {
            return MainStack.Peek();
        }

        public int GetMin()
        {
            if(Min.Count==0)
                throw new System.InvalidOperationException("Stack Empty"); 
            return Min.Peek();
        }
    }
}

увидел блестящее решение здесь: https://www.geeksforgeeks.org/design-a-stack-that-supports-getmin-in-o1-time-and-o1-extra-space/

Ниже приведен код python, который я написал, следуя алгоритму:

class Node:
    def __init__(self, value):
        self.value = value
        self.next = None

class MinStack:
    def __init__(self):
        self.head = None
        self.min = float('inf')

    # @param x, an integer
    def push(self, x):
        if self.head == None:
            self.head = Node(x)
            self.min = x
        else:
            if x >= self.min:
                n = Node(x)
                n.next = self.head
                self.head = n
            else:
                v = 2 * x - self.min
                n = Node(v)
                n.next = self.head
                self.head = n
                self.min = x

    # @return nothing
    def pop(self):
        if self.head:
            if self.head.value < self.min:
                self.min = self.min * 2 - self.head.value
            self.head = self.head.next

    # @return an integer
    def top(self):
        if self.head:
            if self.head.value < self.min:
                self.min = self.min * 2 - self.head.value
                return self.min
            else:
                return self.head.value
        else:
            return -1

    # @return an integer
    def getMin(self):
        if self.head:
            return self.min
        else:
            return -1

для получения элементов getMin из стека. Мы должны использовать два стека .Я. E стек s1 и стек s2.

  1. первоначально оба стека пусты, поэтому добавьте элементы в оба стека

---------------------рекурсивно вызовите Шаг 2 для 4-----------------------

  1. если новый элемент добавлен в стек s1.Затем поп-элементы из стека S2

  2. сравнить новые элементы с s2. какой из них меньше, нажмите С2.

  3. pop из стека s2 (который содержит элемент min)

код выглядит так:

package Stack;
import java.util.Stack;
public class  getMin 
{  

        Stack<Integer> s1= new Stack<Integer>();
        Stack<Integer> s2 = new Stack<Integer>();

        void push(int x)
        {
            if(s1.isEmpty() || s2.isEmpty())

            {
                 s1.push(x);
                 s2.push(x);
            }
            else
            {

               s1. push(x);
                int y = (Integer) s2.pop();
                s2.push(y);
                if(x < y)
                    s2.push(x);
                        }
        }
        public Integer pop()
        {
            int x;
            x=(Integer) s1.pop();
            s2.pop();
            return x;

        }
    public  int getmin()
        {
            int x1;
            x1= (Integer)s2.pop();
            s2.push(x1);
            return x1;
        }

    public static void main(String[] args) {
        getMin s = new getMin();
            s.push(10);
            s.push(20);
            s.push(30);
            System.out.println(s.getmin());
            s.push(1);
            System.out.println(s.getmin());
        }

}

Я думаю, что страдает только операция push, достаточно. Моя реализация включает в себя стек узлов. Каждый узел содержит элемент данных, а также минимум на данный момент. Этот минимум обновляется каждый раз, когда выполняется операция push.

вот некоторые моменты для понимания:

  • я реализовал стек, используя связанный список.

  • вершина указателя всегда указывает на последний перемещаемый элемент. Когда нет элемента в этой верхней части стека НОЛЬ.

  • при перемещении элемента выделяется новый узел, который имеет следующий указатель, указывающий на предыдущий стек, а top обновляется, чтобы указать на этот новый узел.

единственное отличие от обычной реализации стека заключается в том, что во время нажатия он обновляет член min для нового узла.

пожалуйста, посмотрите на код, который реализован на C++ для демонстрационной цели.

/*
 *  Implementation of Stack that can give minimum in O(1) time all the time
 *  This solution uses same data structure for minimum variable, it could be implemented using pointers but that will be more space consuming
 */

#include <iostream>
using namespace std;

typedef struct stackLLNodeType stackLLNode;

struct stackLLNodeType {
    int item;
    int min;
    stackLLNode *next;
};

class DynamicStack {
private:
    int stackSize;
    stackLLNode *top;

public:
    DynamicStack();
    ~DynamicStack();
    void push(int x);
    int pop();
    int getMin();
    int size() { return stackSize; }
};

void pushOperation(DynamicStack& p_stackObj, int item);
void popOperation(DynamicStack& p_stackObj);

int main () {
    DynamicStack stackObj;

    pushOperation(stackObj, 3);
    pushOperation(stackObj, 1);
    pushOperation(stackObj, 2);
    popOperation(stackObj);
    popOperation(stackObj);
    popOperation(stackObj);
    popOperation(stackObj);
    pushOperation(stackObj, 4);
    pushOperation(stackObj, 7);
    pushOperation(stackObj, 6);
    popOperation(stackObj);
    popOperation(stackObj);
    popOperation(stackObj);
    popOperation(stackObj);

    return 0;
}

DynamicStack::DynamicStack() {
    // initialization
    stackSize = 0;
    top = NULL;
}

DynamicStack::~DynamicStack() {
    stackLLNode* tmp;
    // chain memory deallocation to avoid memory leak
    while (top) {
        tmp = top;
        top = top->next;
        delete tmp;
    }
}

void DynamicStack::push(int x) {
    // allocate memory for new node assign to top
    if (top==NULL) {
        top = new stackLLNode;
        top->item = x;
        top->next = NULL;
        top->min = top->item;
    }
    else {
        // allocation of memory
        stackLLNode *tmp = new stackLLNode;
        // assign the new item
        tmp->item = x;
        tmp->next = top;

        // store the minimum so that it does not get lost after pop operation of later minimum
        if (x < top->min)
            tmp->min = x;
        else
            tmp->min = top->min;

        // update top to new node
        top = tmp;
    }
    stackSize++;
}

int DynamicStack::pop() {
    // check if stack is empty
    if (top == NULL)
        return -1;

    stackLLNode* tmp = top;
    int curItem = top->item;
    top = top->next;
    delete tmp;
    stackSize--;
    return curItem;
}

int DynamicStack::getMin() {
    if (top == NULL)
        return -1;
    return top->min;
}
void pushOperation(DynamicStack& p_stackObj, int item) {
    cout<<"Just pushed: "<<item<<endl;
    p_stackObj.push(item);
    cout<<"Current stack min: "<<p_stackObj.getMin()<<endl;
    cout<<"Current stack size: "<<p_stackObj.size()<<endl<<endl;
}

void popOperation(DynamicStack& p_stackObj) {
    int popItem = -1;
    if ((popItem = p_stackObj.pop()) == -1 )
        cout<<"Cannot pop. Stack is empty."<<endl;
    else {
        cout<<"Just popped: "<<popItem<<endl;
        if (p_stackObj.getMin() == -1)
            cout<<"No minimum. Stack is empty."<<endl;
        else
            cout<<"Current stack min: "<<p_stackObj.getMin()<<endl;
        cout<<"Current stack size: "<<p_stackObj.size()<<endl<<endl;
    }
}

и вывод программы выглядит вот так:

Just pushed: 3
Current stack min: 3
Current stack size: 1

Just pushed: 1
Current stack min: 1
Current stack size: 2

Just pushed: 2
Current stack min: 1
Current stack size: 3

Just popped: 2
Current stack min: 1
Current stack size: 2

Just popped: 1
Current stack min: 3
Current stack size: 1

Just popped: 3
No minimum. Stack is empty.
Current stack size: 0

Cannot pop. Stack is empty.
Just pushed: 4
Current stack min: 4
Current stack size: 1

Just pushed: 7
Current stack min: 4
Current stack size: 2

Just pushed: 6
Current stack min: 4
Current stack size: 3

Just popped: 6
Current stack min: 4
Current stack size: 2

Just popped: 7
Current stack min: 4
Current stack size: 1

Just popped: 4
No minimum. Stack is empty.
Current stack size: 0

Cannot pop. Stack is empty.

public interface IMinStack<T extends Comparable<T>> {
  public void push(T val);
  public T pop();
  public T minValue();
  public int size();
}

import java.util.Stack;

public class MinStack<T extends Comparable<T>> implements IMinStack<T> {
  private Stack<T> stack = new Stack<T>();
  private Stack<T> minStack = new Stack<T>();

  @Override
  public void push(T val) {
    stack.push(val);
    if (minStack.isEmpty() || val.compareTo(minStack.peek()) < 0)
        minStack.push(val);
  }

  @Override
  public T pop() {
    T val = stack.pop();
    if ((false == minStack.isEmpty())
            && val.compareTo(minStack.peek()) == 0)
        minStack.pop();
    return val;
  }

  @Override
  public T minValue() {
    return minStack.peek();
  }

  @Override
  public int size() {
    return stack.size();
  }
}