Экстраполировать значения в фрейме данных Pandas
очень легко интерполировать NaN-ячейки в фрейме данных Pandas:
In [98]: df
Out[98]:
neg neu pos avg
250 0.508475 0.527027 0.641292 0.558931
500 NaN NaN NaN NaN
1000 0.650000 0.571429 0.653983 0.625137
2000 NaN NaN NaN NaN
3000 0.619718 0.663158 0.665468 0.649448
4000 NaN NaN NaN NaN
6000 NaN NaN NaN NaN
8000 NaN NaN NaN NaN
10000 NaN NaN NaN NaN
20000 NaN NaN NaN NaN
30000 NaN NaN NaN NaN
50000 NaN NaN NaN NaN
[12 rows x 4 columns]
In [99]: df.interpolate(method='nearest', axis=0)
Out[99]:
neg neu pos avg
250 0.508475 0.527027 0.641292 0.558931
500 0.508475 0.527027 0.641292 0.558931
1000 0.650000 0.571429 0.653983 0.625137
2000 0.650000 0.571429 0.653983 0.625137
3000 0.619718 0.663158 0.665468 0.649448
4000 NaN NaN NaN NaN
6000 NaN NaN NaN NaN
8000 NaN NaN NaN NaN
10000 NaN NaN NaN NaN
20000 NaN NaN NaN NaN
30000 NaN NaN NaN NaN
50000 NaN NaN NaN NaN
[12 rows x 4 columns]
Я также хотел бы экстраполировать значения NaN, которые находятся вне области интерполяции, используя данный метод. Как лучше это сделать?
2 ответов
Экстраполируя Панды DataFrame
s
DataFrame
s может быть экстраполирован, однако в pandas нет простого вызова метода и требуется другая библиотека (например,scipy.оптимизировать).
экстраполируя
экстраполяция, в общем, требует одного, чтобы убедиться предположения о данных быть экстраполированы. Один из способов -кривой некоторое общее параметризованное уравнение для данных, чтобы найти значения параметров, наилучшим образом описывающие существующие данные, которые затем используются для вычисления значений, выходящих за пределы диапазона этих данных. Трудная и ограничивающая проблема с этим подходом заключается в том, что некоторое предположение о тенденция должно быть сделано при выборе параметризованного уравнения. Это можно найти путем проб и ошибок с различными уравнениями, чтобы дать желаемый результат, или это иногда может быть выведено из источника данных. Данные, представленные в вопросе, действительно недостаточно большой набор данных для получения хорошо подходящей кривой; однако он достаточно хорош для иллюстрации.
ниже приведен пример экстраполяции DataFrame
С 3 rd порядок полинома
f(x) = a x3 + b x2 + c x + d (Eq. 1)
это общая функция (func()
) кривая подходит для каждого столбца, чтобы получить уникальные параметры столбца (т. е. a, b, c, d). Затем эти параметризованные уравнения используются для экстраполяции данных в каждом столбце для всех индексов с NaN
s.
import pandas as pd
from cStringIO import StringIO
from scipy.optimize import curve_fit
df = pd.read_table(StringIO('''
neg neu pos avg
0 NaN NaN NaN NaN
250 0.508475 0.527027 0.641292 0.558931
500 NaN NaN NaN NaN
1000 0.650000 0.571429 0.653983 0.625137
2000 NaN NaN NaN NaN
3000 0.619718 0.663158 0.665468 0.649448
4000 NaN NaN NaN NaN
6000 NaN NaN NaN NaN
8000 NaN NaN NaN NaN
10000 NaN NaN NaN NaN
20000 NaN NaN NaN NaN
30000 NaN NaN NaN NaN
50000 NaN NaN NaN NaN'''), sep='\s+')
# Do the original interpolation
df.interpolate(method='nearest', xis=0, inplace=True)
# Display result
print 'Interpolated data:'
print df
print
# Function to curve fit to the data
def func(x, a, b, c, d):
return a * (x ** 3) + b * (x ** 2) + c * x + d
# Initial parameter guess, just to kick off the optimization
guess = (0.5, 0.5, 0.5, 0.5)
# Create copy of data to remove NaNs for curve fitting
fit_df = df.dropna()
# Place to store function parameters for each column
col_params = {}
# Curve fit each column
for col in fit_df.columns:
# Get x & y
x = fit_df.index.astype(float).values
y = fit_df[col].values
# Curve fit column and get curve parameters
params = curve_fit(func, x, y, guess)
# Store optimized parameters
col_params[col] = params[0]
# Extrapolate each column
for col in df.columns:
# Get the index values for NaNs in the column
x = df[pd.isnull(df[col])].index.astype(float).values
# Extrapolate those points with the fitted function
df[col][x] = func(x, *col_params[col])
# Display result
print 'Extrapolated data:'
print df
print
print 'Data was extrapolated with these column functions:'
for col in col_params:
print 'f_{}(x) = {:0.3e} x^3 + {:0.3e} x^2 + {:0.4f} x + {:0.4f}'.format(col, *col_params[col])
Экстраполируя Результаты
Interpolated data:
neg neu pos avg
0 NaN NaN NaN NaN
250 0.508475 0.527027 0.641292 0.558931
500 0.508475 0.527027 0.641292 0.558931
1000 0.650000 0.571429 0.653983 0.625137
2000 0.650000 0.571429 0.653983 0.625137
3000 0.619718 0.663158 0.665468 0.649448
4000 NaN NaN NaN NaN
6000 NaN NaN NaN NaN
8000 NaN NaN NaN NaN
10000 NaN NaN NaN NaN
20000 NaN NaN NaN NaN
30000 NaN NaN NaN NaN
50000 NaN NaN NaN NaN
Extrapolated data:
neg neu pos avg
0 0.411206 0.486983 0.631233 0.509807
250 0.508475 0.527027 0.641292 0.558931
500 0.508475 0.527027 0.641292 0.558931
1000 0.650000 0.571429 0.653983 0.625137
2000 0.650000 0.571429 0.653983 0.625137
3000 0.619718 0.663158 0.665468 0.649448
4000 0.621036 0.969232 0.708464 0.766245
6000 1.197762 2.799529 0.991552 1.662954
8000 3.281869 7.191776 1.702860 4.058855
10000 7.767992 15.272849 3.041316 8.694096
20000 97.540944 150.451269 26.103320 91.365599
30000 381.559069 546.881749 94.683310 341.042883
50000 1979.646859 2686.936912 467.861511 1711.489069
Data was extrapolated with these column functions:
f_neg(x) = 1.864e-11 x^3 + -1.471e-07 x^2 + 0.0003 x + 0.4112
f_neu(x) = 2.348e-11 x^3 + -1.023e-07 x^2 + 0.0002 x + 0.4870
f_avg(x) = 1.542e-11 x^3 + -9.016e-08 x^2 + 0.0002 x + 0.5098
f_pos(x) = 4.144e-12 x^3 + -2.107e-08 x^2 + 0.0000 x + 0.6312
участок avg
колонка
без большего набора данных или зная источник данных, этот результат может быть совершенно неправильным, но должен иллюстрировать процесс экстраполяции DataFrame
. Предполагаемое уравнение в func()
вероятно, должно быть играл С, чтобы получить правильную экстраполяцию. Кроме того, не было предпринято никаких попыток сделать код эффективным.
обновление:
если ваш индекс нечисловой, как DatetimeIndex
, посмотреть этот ответ как экстраполировать их.
import pandas as pd
try:
# for Python2
from cStringIO import StringIO
except ImportError:
# for Python3
from io import StringIO
df = pd.read_table(StringIO('''
neg neu pos avg
0 NaN NaN NaN NaN
250 0.508475 0.527027 0.641292 0.558931
999 NaN NaN NaN NaN
1000 0.650000 0.571429 0.653983 0.625137
2000 NaN NaN NaN NaN
3000 0.619718 0.663158 0.665468 0.649448
4000 NaN NaN NaN NaN
6000 NaN NaN NaN NaN
8000 NaN NaN NaN NaN
10000 NaN NaN NaN NaN
20000 NaN NaN NaN NaN
30000 NaN NaN NaN NaN
50000 NaN NaN NaN NaN'''), sep='\s+')
print(df.interpolate(method='nearest', axis=0).ffill().bfill())
доходность
neg neu pos avg
0 0.508475 0.527027 0.641292 0.558931
250 0.508475 0.527027 0.641292 0.558931
999 0.650000 0.571429 0.653983 0.625137
1000 0.650000 0.571429 0.653983 0.625137
2000 0.650000 0.571429 0.653983 0.625137
3000 0.619718 0.663158 0.665468 0.649448
4000 0.619718 0.663158 0.665468 0.649448
6000 0.619718 0.663158 0.665468 0.649448
8000 0.619718 0.663158 0.665468 0.649448
10000 0.619718 0.663158 0.665468 0.649448
20000 0.619718 0.663158 0.665468 0.649448
30000 0.619718 0.663158 0.665468 0.649448
50000 0.619718 0.663158 0.665468 0.649448
Примечание: я изменил свой df
немного, чтобы показать, как интерполяция с nearest
отличается от выполнения df.fillna
. (См. строку с индексом 999.)
Я также добавил строку NaNs с индексом 0, чтобы показать, что bfill()
также может быть необходимо.