Наиболее эффективный способ вычитать один массив из другого

У меня есть следующий код, который является узким местом в одной части моего приложения. Все, что я делаю, это вычитаю на массиве из другого. Оба этих массива имеют более 100000 элементов. Я пытаюсь найти способ сделать это более эффективным.

var
  Array1, Array2 : array of integer;

..... 
// Code that fills the arrays
.....

for ix := 0 to length(array1)-1
  Array1[ix] := Array1[ix] - Array2[ix];

end;

у кого-нибудь есть предложения?

5 ответов


мне было очень интересно оптимизировать скорость в этом простом случае. Поэтому я сделал 6 простых процедур и измерил ТИК процессора и время при размере массива 100000;

  1. процедура Pascal с диапазоном параметров компилятора и проверкой переполнения на
  2. процедура Pascal с диапазоном параметров компилятора и проверкой переполнения
  3. классическая процедура ассемблера x86.
  4. процедура ассемблера с инструкциями SSE и unaligned 16 байт двигайся!--12-->.
  5. процедура ассемблера с инструкциями SSE и выровненный 16-байтовый ход.
  6. ассемблер 8 раз развернул цикл с инструкциями SSE и выровненный 16-байтовый ход.

проверьте результаты на картинке и коде для получения дополнительной информации. enter image description here

чтобы получить выравнивание памяти 16 байт, сначала удалите точку в файле " FastMM4Options.директива Инк' {$.определять Align16Bytes} !

program SubTest;

{$APPTYPE CONSOLE}

uses
//In file 'FastMM4Options.inc' delite the dot in directive {$.define Align16Bytes}
//to get 16 byte memory alignment!
  FastMM4,
  windows,
  SysUtils;

var
  Ar1                   :array of integer;
  Ar2                   :array of integer;
  ArLength              :integer;
  StartTicks            :int64;
  EndTicks              :int64;
  TicksPerMicroSecond   :int64;

function GetCpuTicks: int64;
asm
  rdtsc
end;
{$R+}
{$Q+}
procedure SubArPasRangeOvfChkOn(length: integer);
var
  n: integer;
begin
  for n := 0 to length -1 do
    Ar1[n] := Ar1[n] - Ar2[n];
end;
{$R-}
{$Q-}
procedure SubArPas(length: integer);
var
  n: integer;
begin
  for n := 0 to length -1 do
    Ar1[n] := Ar1[n] - Ar2[n];
end;

procedure SubArAsm(var ar1, ar2; length: integer);
asm
//Length must be > than 0!
   push ebx
   lea  ar1, ar1 - 4
   lea  ar2, ar2 - 4
@Loop:
   mov  ebx, [ar2 + length * 4]
   sub  [ar1 + length * 4], ebx
   dec  length
   jnz  @Loop
@exit:
   pop  ebx
end;

procedure SubArAsmSimdU(var ar1, ar2; length: integer);
asm
//Prepare length
  push     length
  shr      length, 2
  jz       @Finish
@Loop:
  movdqu   xmm1, [ar1]
  movdqu   xmm2, [ar2]
  psubd    xmm1, xmm2
  movdqu   [ar1], xmm1
  add      ar1, 16
  add      ar2, 16
  dec      length
  jnz      @Loop
@Finish:
  pop      length
  push     ebx
  and      length, 3
  jz       @Exit
//Do rest, up to 3 subtractions...
  mov      ebx, [ar2]
  sub      [ar1], ebx
  dec      length
  jz       @Exit
  mov      ebx, [ar2 + 4]
  sub      [ar1 + 4], ebx
  dec      length
  jz       @Exit
  mov      ebx, [ar2 + 8]
  sub      [ar1 + 8], ebx
@Exit:
  pop      ebx
end;

procedure SubArAsmSimdA(var ar1, ar2; length: integer);
asm
  push     ebx
//Unfortunately delphi use first 8 bytes for dinamic array length and reference
//counter, from that reason the dinamic array address should start with $xxxxxxx8
//instead &xxxxxxx0. So we must first align ar1, ar2 pointers!
  mov      ebx, [ar2]
  sub      [ar1], ebx
  dec      length
  jz       @exit
  mov      ebx, [ar2 + 4]
  sub      [ar1 + 4], ebx
  dec      length
  jz       @exit
  add      ar1, 8
  add      ar2, 8
//Prepare length for 16 byte data transfer
  push     length
  shr      length, 2
  jz       @Finish
@Loop:
  movdqa   xmm1, [ar1]
  movdqa   xmm2, [ar2]
  psubd    xmm1, xmm2
  movdqa   [ar1], xmm1
  add      ar1, 16
  add      ar2, 16
  dec      length
  jnz      @Loop
@Finish:
  pop      length
  and      length, 3
  jz       @Exit
//Do rest, up to 3 subtractions...
  mov      ebx, [ar2]
  sub      [ar1], ebx
  dec      length
  jz       @Exit
  mov      ebx, [ar2 + 4]
  sub      [ar1 + 4], ebx
  dec      length
  jz       @Exit
  mov      ebx, [ar2 + 8]
  sub      [ar1 + 8], ebx
@Exit:
  pop      ebx
end;

procedure SubArAsmSimdAUnrolled8(var ar1, ar2; length: integer);
asm
  push     ebx
//Unfortunately delphi use first 8 bytes for dinamic array length and reference
//counter, from that reason the dinamic array address should start with $xxxxxxx8
//instead &xxxxxxx0. So we must first align ar1, ar2 pointers!
  mov      ebx, [ar2]
  sub      [ar1], ebx
  dec      length
  jz       @exit
  mov      ebx, [ar2 + 4]
  sub      [ar1 + 4], ebx
  dec      length
  jz       @exit
  add      ar1, 8                       //Align pointer to 16 byte
  add      ar2, 8                       //Align pointer to 16 byte
//Prepare length for 16 byte data transfer
  push     length
  shr      length, 5                    //8 * 4 subtructions per loop
  jz       @Finish                      //To small for LoopUnrolled
@LoopUnrolled:
//Unrolle 1, 2, 3, 4
  movdqa   xmm4, [ar2]
  movdqa   xmm5, [16 + ar2]
  movdqa   xmm6, [32 + ar2]
  movdqa   xmm7, [48 + ar2]
//
  movdqa   xmm0, [ar1]
  movdqa   xmm1, [16 + ar1]
  movdqa   xmm2, [32 + ar1]
  movdqa   xmm3, [48 + ar1]
//
  psubd    xmm0, xmm4
  psubd    xmm1, xmm5
  psubd    xmm2, xmm6
  psubd    xmm3, xmm7
//
  movdqa   [48 + ar1], xmm3
  movdqa   [32 + ar1], xmm2
  movdqa   [16 + ar1], xmm1
  movdqa   [ar1], xmm0
//Unrolle 5, 6, 7, 8
  movdqa   xmm4, [64 + ar2]
  movdqa   xmm5, [80 + ar2]
  movdqa   xmm6, [96 + ar2]
  movdqa   xmm7, [112 + ar2]
//
  movdqa   xmm0, [64 + ar1]
  movdqa   xmm1, [80 + ar1]
  movdqa   xmm2, [96 + ar1]
  movdqa   xmm3, [112 + ar1]
//
  psubd    xmm0, xmm4
  psubd    xmm1, xmm5
  psubd    xmm2, xmm6
  psubd    xmm3, xmm7
//
  movdqa   [112 + ar1], xmm3
  movdqa   [96 + ar1], xmm2
  movdqa   [80 + ar1], xmm1
  movdqa   [64 + ar1], xmm0
//
  add      ar1, 128
  add      ar2, 128
  dec      length
  jnz      @LoopUnrolled
@FinishUnrolled:
  pop      length
  and      length, F
//Do rest, up to 31 subtractions...
@Finish:
  mov      ebx, [ar2]
  sub      [ar1], ebx
  add      ar1, 4
  add      ar2, 4
  dec      length
  jnz      @Finish
@Exit:
  pop      ebx
end;

procedure WriteOut(EndTicks: Int64; Str: string);
begin
  WriteLn(Str + IntToStr(EndTicks - StartTicks)
    + ' Time: ' + IntToStr((EndTicks - StartTicks) div TicksPerMicroSecond) + 'us');
  Sleep(5);
  SwitchToThread;
  StartTicks := GetCpuTicks;
end;

begin
  ArLength := 100000;
//Set TicksPerMicroSecond
  QueryPerformanceFrequency(TicksPerMicroSecond);
  TicksPerMicroSecond := TicksPerMicroSecond div 1000000;
//
  SetLength(Ar1, ArLength);
  SetLength(Ar2, ArLength);
//Fill arrays
//...
//Tick time info
  WriteLn('CPU ticks per mikro second: ' + IntToStr(TicksPerMicroSecond));
  Sleep(5);
  SwitchToThread;
  StartTicks := GetCpuTicks;
//Test 1
  SubArPasRangeOvfChkOn(ArLength);
  WriteOut(GetCpuTicks, 'SubAr Pas Range and Overflow Checking On, Ticks: ');
//Test 2
  SubArPas(ArLength);
  WriteOut(GetCpuTicks, 'SubAr Pas, Ticks: ');
//Test 3
  SubArAsm(Ar1[0], Ar2[0], ArLength);
  WriteOut(GetCpuTicks, 'SubAr Asm, Ticks: ');
//Test 4
  SubArAsmSimdU(Ar1[0], Ar2[0], ArLength);
  WriteOut(GetCpuTicks, 'SubAr Asm SIMD mem unaligned, Ticks: ');
//Test 5
  SubArAsmSimdA(Ar1[0], Ar2[0], ArLength);
  WriteOut(GetCpuTicks, 'SubAr Asm with SIMD mem aligned, Ticks: ');
//Test 6
  SubArAsmSimdAUnrolled8(Ar1[0], Ar2[0], ArLength);
  WriteOut(GetCpuTicks, 'SubAr Asm with SIMD mem aligned 8*unrolled, Ticks: ');
//
  ReadLn;
  Ar1 := nil;
  Ar2 := nil;
end.

...

самая быстрая процедура asm с 8 раз развернутыми инструкциями SIMD занимает всего 68us и примерно в 4 раза быстрее, чем процедура Pascal.

Как мы видим, процедура цикла Pascal, вероятно, не критична, она занимает всего около 277us (переполнение и проверка диапазона) на 2,4 ГГц CPU при 100000 вычитаниях.

Так этот код не может быть узким местом?


запуск этого на нескольких потоках, с этим большим массивом будет чистым линейным ускорением. Как говорится, до неловкости параллельна.


запуск вычитания на нескольких потоках звучит хорошо, но 100k integer sunstraction не занимает много времени процессора, поэтому, возможно, threadpool... Однако потоки настроек также имеют много накладных расходов, поэтому короткие массивы будут иметь более низкую производительность в параллельных потоках, чем только в одном (основном) потоке!

вы отключились в настройках компилятора, переполнении и проверке диапазона?

вы можете попробовать использовать ASM rutine, это очень просто...

что-то например:

procedure SubArray(var ar1, ar2; length: integer);
asm
//length must be > than 0!
   push ebx
   lea  ar1, ar1 -4
   lea  ar2, ar2 -4
@Loop:
   mov  ebx, [ar2 + length *4]
   sub  [ar1 + length *4], ebx
   dec  length
//Here you can put more folloving parts of rutine to more unrole it to speed up.
   jz   @exit
   mov  ebx, [ar2 + length *4]
   sub  [ar1 + length *4], ebx
   dec  length
//
   jnz  @Loop
@exit:
   pop  ebx
end;


begin
   SubArray(Array1[0], Array2[0], length(Array1));

это может быть намного быстрее...

EDIT: добавлена процедура с инструкциями SIMD. Эта процедура запрашивает поддержку процессора SSE. Он может принимать 4 целых числа в регистре XMM и вычитать сразу. Существует также возможность использовать movdqa вместо movdqu это быстрее, но вы должны сначала обеспечить 16 байт aligment. Вы также можете unrole расширения XMM пар, как в моем первом случае АСМ. (Меня интересует измерение скорости. :))

var
  array1, array2: array of integer;

procedure SubQIntArray(var ar1, ar2; length: integer);
asm
//prepare length if not rounded to 4
  push     ecx
  shr      length, 2
  jz       @LengthToSmall
@Loop:
  movdqu   xmm1, [ar1]          //or movdqa but ensure 16b aligment first
  movdqu   xmm2, [ar2]          //or movdqa but ensure 16b aligment first
  psubd    xmm1, xmm2
  movdqu   [ar1], xmm1          //or movdqa but ensure 16b aligment first
  add      ar1, 16
  add      ar2, 16
  dec      length
  jnz      @Loop
@LengthToSmall:
  pop      ecx
  push     ebx
  and      ecx, 3
  jz       @Exit
  mov      ebx, [ar2]
  sub      [ar1], ebx
  dec      ecx
  jz       @Exit
  mov      ebx, [ar2 + 4]
  sub      [ar1 + 4], ebx
  dec      ecx
  jz       @Exit
  mov      ebx, [ar2 + 8]
  sub      [ar1 + 8], ebx
@Exit:
  pop      ebx
end;

begin
//Fill arrays first!
  SubQIntArray(Array1[0], Array2[0], length(Array1));

Я не эксперт по сборке, но я думаю, что следующее близко к оптимальному, если вы не принимаете во внимание инструкции SIMD или параллельную обработку, позже можно легко выполнить, передав части массива функции.

как
Thread1: SubArray (ar1[0], ar2[0], 50);
Thread2: SubArray (ar1[50], ar2[50], 50);

procedure SubArray(var Array1, Array2; const Length: Integer);
var
  ap1, ap2 : PInteger;
  i : Integer;
begin
  ap1 := @Array1;
  ap2 := @Array2;
  i := Length;
  while i > 0 do
  begin
    ap1^ := ap1^ - ap2^;
    Inc(ap1);
    Inc(ap2);
    Dec(i);
  end;
end;

// similar assembly version
procedure SubArrayEx(var Array1, Array2; const Length: Integer);
asm
  // eax = @Array1
  // edx = @Array2
  // ecx = Length
  // esi = temp register for array2^
  push esi
  cmp ecx, 0
  jle @Exit
  @Loop:
  mov esi, [edx]
  sub [eax], esi
  add eax, 4
  add edx, 4
  dec ecx
  jnz @Loop
  @Exit:
  pop esi
end;


procedure Test();
var
  a1, a2 : array of Integer;
  i : Integer;
begin
  SetLength(a1, 3);
  a1[0] := 3;
  a1[1] := 1;
  a1[2] := 2;
  SetLength(a2, 3);
  a2[0] := 4;
  a2[1] := 21;
  a2[2] := 2;
  SubArray(a1[0], a2[0], Length(a1));

  for i := 0 to Length(a1) - 1 do
    Writeln(a1[i]);

  Readln;
end;

Это не настоящий ответ на ваш вопрос, но я бы исследовал, если бы я мог сделать вычитание уже в какое-то время while заполнение массивов значениями. При желании я бы даже рассмотрел третий массив в памяти для хранения результата вычитания. В современных вычислениях "стоимость" памяти значительно ниже, чем "стоимость" времени, необходимого для выполнения дополнительного действия над памятью.

теоретически вы получите хотя бы небольшую производительность, когда вычитание может быть сделано, пока значения все еще находятся в регистрах или кэше процессора, но на практике вы можете наткнуться на несколько трюков, которые могут повысить производительность всего алгоритма.