Вычисление обратной матрицы с использованием lapack в C

Я хотел бы иметь возможность вычислить инверсию общего NxN матрица в C / C++ с использованием lapack.

Я понимаю, что способ сделать инверсию в lapack-это использовать dgetri функция, однако, я не могу понять, какие все ее аргументы должны быть.

вот код, который у меня есть:

void dgetri_(int* N, double* A, int* lda, int* IPIV, double* WORK, int* lwork, int* INFO);

int main(){

    double M [9] = {
        1,2,3,
        4,5,6,
        7,8,9
    };

    return 0;
}

как бы вы его завершили, чтобы получить обратную от 3x3 матрица M с помощью dgetri_?

4 ответов


во-первых, M должен быть двумерным массивом, например double M[3][3]. Ваш массив, математически говоря, является вектором 1x9, который не является обратимым.

  • N-указатель на int для порядок матрицы - в этом случае, N=3.

  • a-указатель на LU факторизация матрицы, которая вы можете получить, запустив LAPACK рутина dgetrf.

  • LDA-целое число для " ведущего элемент " матрицы, который давайте вы выбираете подмножество большего матрица, если вы хотите просто инвертировать маленький кусочек. Если вы хотите инвертировать вся матрица, LDA должна просто быть равным N.

  • IPIV-это сводные индексы матрица, другими словами, это список указания какие строки поменять чтобы перевернуть матрицу. IPIV должен быть сгенерирован LAPACK рутина dgetrf.

  • LWORK и работа "рабочие пространства" используется LAPACK. Если вы инвертируете этот вся матрица, LWORK должна быть int равен N^2, и работа должна быть двойной массив с элементами LWORK.

  • INFO - это просто переменная состояния для расскажет ли операция успешно завершить. Так как не все матрицы обратимы, я бы рекомендуем вам отправлять это вроде проверки ошибок системы. INFO=0 для успешной работы, INFO= - i, Если I-й аргумент имел неверное входное значение, и INFO > 0, если матрица не обратимый.

Итак, для вашего кода я бы сделал что-то вроде этого:

int main(){

    double M[3][3] = { {1 , 2 , 3},
                       {4 , 5 , 6},
                       {7 , 8 , 9}}
    double pivotArray[3]; //since our matrix has three rows
    int errorHandler;
    double lapackWorkspace[9];

    // dgetrf(M,N,A,LDA,IPIV,INFO) means invert LDA columns of an M by N matrix 
    // called A, sending the pivot indices to IPIV, and spitting error 
    // information to INFO.
    // also don't forget (like I did) that when you pass a two-dimensional array
    // to a function you need to specify the number of "rows"
    dgetrf_(3,3,M[3][],3,pivotArray[3],&errorHandler);
    //some sort of error check

    dgetri_(3,M[3][],3,pivotArray[3],9,lapackWorkspace,&errorHandler);
    //another error check

    }

вот рабочий код для вычисления обратной матрицы с использованием lapack в C / C++:

#include <cstdio>

extern "C" {
    // LU decomoposition of a general matrix
    void dgetrf_(int* M, int *N, double* A, int* lda, int* IPIV, int* INFO);

    // generate inverse of a matrix given its LU decomposition
    void dgetri_(int* N, double* A, int* lda, int* IPIV, double* WORK, int* lwork, int* INFO);
}

void inverse(double* A, int N)
{
    int *IPIV = new int[N+1];
    int LWORK = N*N;
    double *WORK = new double[LWORK];
    int INFO;

    dgetrf_(&N,&N,A,&N,IPIV,&INFO);
    dgetri_(&N,A,&N,IPIV,WORK,&LWORK,&INFO);

    delete IPIV;
    delete WORK;
}

int main(){

    double A [2*2] = {
        1,2,
        3,4
    };

    inverse(A, 2);

    printf("%f %f\n", A[0], A[1]);
    printf("%f %f\n", A[2], A[3]);

    return 0;
}

вот рабочая версия выше, используя интерфейс OpenBlas для LAPACKE. Ссылка с библиотекой openblas (ЛАПАККЕ уже содержится)

#include <stdio.h>
#include "cblas.h"
#include "lapacke.h"

// inplace inverse n x n matrix A.
// matrix A is Column Major (i.e. firts line, second line ... *not* C[][] order)
// returns:
//   ret = 0 on success
//   ret < 0 illegal argument value
//   ret > 0 singular matrix

lapack_int matInv(double *A, unsigned n)
{
    int ipiv[n+1];
    lapack_int ret;

    ret =  LAPACKE_dgetrf(LAPACK_COL_MAJOR,
                          n,
                          n,
                          A,
                          n,
                          ipiv);

    if (ret !=0)
        return ret;


    ret = LAPACKE_dgetri(LAPACK_COL_MAJOR,
                       n,
                       A,
                       n,
                       ipiv);
    return ret;
}

int main()
{
    double A[] = {
        0.378589,   0.971711,   0.016087,   0.037668,   0.312398,
        0.756377,   0.345708,   0.922947,   0.846671,   0.856103,
        0.732510,   0.108942,   0.476969,   0.398254,   0.507045,
        0.162608,   0.227770,   0.533074,   0.807075,   0.180335,
        0.517006,   0.315992,   0.914848,   0.460825,   0.731980
    };

    for (int i=0; i<25; i++) {
        if ((i%5) == 0) putchar('\n');
        printf("%+12.8f ",A[i]);
    }
    putchar('\n');

    matInv(A,5);

    for (int i=0; i<25; i++) {
        if ((i%5) == 0) putchar('\n');
        printf("%+12.8f ",A[i]);
    }
    putchar('\n');
}

пример:

% g++ -I [OpenBlas path]/include/ example.cpp [OpenBlas path]/lib/libopenblas.a
% a.out

+0.37858900  +0.97171100  +0.01608700  +0.03766800  +0.31239800 
+0.75637700  +0.34570800  +0.92294700  +0.84667100  +0.85610300 
+0.73251000  +0.10894200  +0.47696900  +0.39825400  +0.50704500 
+0.16260800  +0.22777000  +0.53307400  +0.80707500  +0.18033500 
+0.51700600  +0.31599200  +0.91484800  +0.46082500  +0.73198000 

+0.24335255  -2.67946180  +3.57538817  +0.83711880  +0.34704217 
+1.02790497  -1.05086895  -0.07468137  +0.71041070  +0.66708313 
-0.21087237  -4.47765165  +1.73958308  +1.73999641  +3.69324020 
-0.14100897  +2.34977565  -0.93725915  +0.47383541  -2.15554470 
-0.26329660  +6.46315378  -4.07721533  -3.37094863  -2.42580445 

вот рабочая версия примера Спенсера Нельсона выше. Одна из загадок заключается в том, что входная матрица находится в порядке строк, хотя она, похоже, вызывает базовую процедуру fortran dgetri. Я пришел к выводу, что все основные процедуры fortran требуют порядка столбцов, но я не эксперт по LAPACK, на самом деле, я использую этот пример, чтобы помочь мне изучить его. Но, что одна тайна в сторону:

входная матрица в примере является сингулярной. LAPACK пытается скажите вам это, вернув 3 на errorHandler. Я изменил 9 в этой матрице к 19 и errorHandler of 0 сигнализация успеха, и сравнил результат с тем, что от Mathematica. Сравнение также было успешным и подтвердило, что матрица в Примере должна быть в порядке строк-основных, как представлено.

вот рабочий код:

#include <stdio.h>
#include <stddef.h>
#include <lapacke.h>

int main() {
    int N = 3;
    int NN = 9;
    double M[3][3] = { {1 , 2 , 3},
                       {4 , 5 , 6},
                       {7 , 8 , 9} };
    int pivotArray[3]; //since our matrix has three rows
    int errorHandler;
    double lapackWorkspace[9];

    // dgetrf(M,N,A,LDA,IPIV,INFO) means invert LDA columns of an M by N matrix
    // called A, sending the pivot indices to IPIV, and spitting error information
    // to INFO. also don't forget (like I did) that when you pass a two-dimensional
    // array to a function you need to specify the number of "rows"
    dgetrf_(&N, &N, M[0], &N, pivotArray, &errorHandler);
    printf ("dgetrf eh, %d, should be zero\n", errorHandler);

    dgetri_(&N, M[0], &N, pivotArray, lapackWorkspace, &NN, &errorHandler);
    printf ("dgetri eh, %d, should be zero\n", errorHandler);

    for (size_t row = 0; row < N; ++row)
    {   for (size_t col = 0; col < N; ++col)
        {   printf ("%g", M[row][col]);
            if (N-1 != col)
            {   printf (", ");   }   }
        if (N-1 != row)
        {   printf ("\n");   }   }

    return 0;   }

я создал и запустил его следующим образом на Mac:

gcc main.c -llapacke -llapack
./a.out

я nm в библиотеке ЛАПАКЕ и нашел следующее:

liblapacke.a(lapacke_dgetri.o):
                 U _LAPACKE_dge_nancheck
0000000000000000 T _LAPACKE_dgetri
                 U _LAPACKE_dgetri_work
                 U _LAPACKE_xerbla
                 U _free
                 U _malloc

liblapacke.a(lapacke_dgetri_work.o):
                 U _LAPACKE_dge_trans
0000000000000000 T _LAPACKE_dgetri_work
                 U _LAPACKE_xerbla
                 U _dgetri_
                 U _free
                 U _malloc

редактировать

вот рабочая версия, которая обходит LAPACKE [sic], используя процедуры LAPACK fortran напрямую. Я не понимаю, почему строковый ввод дает правильные результаты, но я снова подтвердил это в Mathematica.

#include <stdio.h>
#include <stddef.h>

int main() {
    int N = 3;
    int NN = 9;
    double M[3][3] = { {1 , 2 ,  3},
                       {4 , 5 ,  6},
                       {7 , 8 , 19} };
    int pivotArray[3]; //since our matrix has three rows
    int errorHandler;
    double lapackWorkspace[9];
    /* from http://www.netlib.no/netlib/lapack/double/dgetrf.f
      SUBROUTINE DGETRF( M, N, A, LDA, IPIV, INFO )
      *
      *  -- LAPACK routine (version 3.1) --
      *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
      *     November 2006
      *
      *     .. Scalar Arguments ..
      INTEGER            INFO, LDA, M, N
      *     ..
      *     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   A( LDA, * )
    */

    extern void dgetrf_ (int * m, int * n, double * A, int * LDA, int * IPIV,
                         int * INFO);

    /* from http://www.netlib.no/netlib/lapack/double/dgetri.f
       SUBROUTINE DGETRI( N, A, LDA, IPIV, WORK, LWORK, INFO )
       *
       *  -- LAPACK routine (version 3.1) --
       *     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
       *     November 2006
       *
       *     .. Scalar Arguments ..
       INTEGER            INFO, LDA, LWORK, N
       *     ..
       *     .. Array Arguments ..
       INTEGER            IPIV( * )
       DOUBLE PRECISION   A( LDA, * ), WORK( * )
    */

    extern void dgetri_ (int * n, double * A, int * LDA, int * IPIV,
                         double * WORK, int * LWORK, int * INFO);

    // dgetrf(M,N,A,LDA,IPIV,INFO) means invert LDA columns of an M by N matrix
    // called A, sending the pivot indices to IPIV, and spitting error information
    // to INFO. also don't forget (like I did) that when you pass a two-dimensional
    // array to a function you need to specify the number of "rows"
    dgetrf_(&N, &N, M[0], &N, pivotArray, &errorHandler);
    printf ("dgetrf eh, %d, should be zero\n", errorHandler);

    dgetri_(&N, M[0], &N, pivotArray, lapackWorkspace, &NN, &errorHandler);
    printf ("dgetri eh, %d, should be zero\n", errorHandler);

    for (size_t row = 0; row < N; ++row)
    {   for (size_t col = 0; col < N; ++col)
        {   printf ("%g", M[row][col]);
            if (N-1 != col)
            {   printf (", ");   }   }
        if (N-1 != row)
        {   printf ("\n");   }   }
    return 0;   }

построен и работает следующим образом:

$ gcc foo.c -llapack
$ ./a.out
dgetrf eh, 0, should be zero
dgetri eh, 0, should be zero
-1.56667, 0.466667, 0.1
1.13333, 0.0666667, -0.2
0.1, -0.2, 0.1

редактировать